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MOLECULAR DIAGNOSTICS AND DNA TAXONOMY

New single nucleotide polymorphisms in Alectoris
identified using chicken genome information allow
Alectoris introgression detection
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Abstract

Using the chicken genome, 114 polymorphisms (109 SNPs and 5 INDELs) were identified in
the Alectoris genus by polymerase chain reaction-single strand conformation polymorphism.
Using these, a panel of SNPs is described, which allows easy detection of introgression
of Alectoris chukar in wild Alectoris rufa populations, when used with a primer extension
protocol. The selected polymorphisms were genotyped and their allelic frequencies estimated
on 98 A. rufa partridges sampled from nonrestocking Spanish areas, and 63 A. chukar
partridges from Greek and Spanish farms. Power calculations to determine an optimum
subset of markers for a given significance level were performed.
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The main Alectoris species of the Mediterranean area are
the red-legged partridge (Alectoris rufa), the rock
partridge (Alectoris graeca), and the chukar partridge
(Alectoris chukar), which show a small overlapping area
(Johnsgard 1988). As a consequence, natural interbree-
ding between A. rufa and A. graeca (Bernard-Laurent
1984) and A. graeca and A. chukar (Dragoev 1974) can
occur, but hybridization between A. rufa and A. chukar
partridges should not. However, several studies have
recorded cases of artificial genetic pollution of A. rufa and
A. graeca by A. chukar (Randi et al. 2003; Barilani et al.
2006; Barbanera et al. 2007). Alectoris genus includes spe-
cies with important cynegetic characteristics in European
countries (Vargas et al. 2006) and, as wild partridge
populations decrease (Negro et al. 2001; Gonzélez 2004),
numerous hunting areas across the countries are periodi-
cally reinforced with millions of captive-bred individuals
(Negro et al. 2001). These captive individuals are the
result of wild A. rufa and non-native species that have a
better growth rate and adaptation to captivity as a result
of artificial selection like A. chukar (Baratti et al. 2004; Bar-
banera et al. 2005), and uncontrolled restocking of
hybrids may lead to a widespread introgression of fo-
reign species in locally adapted partridge species (Allen-
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dorf et al. 2001; Barilani et al. 2007; Barbanera et al. 2009).
Identification of hybrids by phenotypic characteristics
(e.g. plumage) appears to be difficult beyond the first
cross generation (Negro ef al. 2001; Barilani et al. 2007).
However, the detection of these advanced hybrids is cru-
cial to avoid introgression by removal of hybrids or by a
captive-breeding programme that allows strict control of
farming and restocking with captive-reared birds (Allen-
dorf et al. 2001). Although some efforts have led to the
development of microsatellites (Baratti et al. 2004; Gonza-
lez et al. 2005) or randomly amplified polymorphic DNA
(RAPD) markers (Cortés et al. 2001; Negro et al. 2001), the
identification of SNPs in the Alectoris genome is crucial
for the easy analysis of large amounts of animals in a
short time (Sanchez et al. 2006), because of the biallelic
condition of these markers, which makes them easy to
validate and to genotype with high-throughput technolo-
gies. The difficulty of developing a hybridization techni-
que based on SNPs in the Alectoris species lies in the fact
that there is rather scarce information about the partridge
genome. To be able to use a better alternative to STR or
RAPD for Alectoris hybrid identification, here we identify
109 SNPs and five INDELs located in 35 different genes
in the partridge genome by polymerase chain reaction—
single strand conformation polymorphism (PCR-SSCP)
of fragments chosen on the basis of the Gallus gallus gen-
ome. Alectoris rufa and A. chukar samples were used to
detect polymorphism and to estimate subsequent allele
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frequencies. Although some commercial applications are
available (e.g. SNPlex or Veracode), which allow scree-
ning of a few mutations (a minimum of 48) in a reduced
number of individuals, here we have developed a me-
dium-throughput method for which we chose the 23 most
informative polymorphisms of the 114 genomic poly-
morphisms, together with one located in the mitochon-
drial genome. Several PCR multiplexes were built and
resolved in an SNP detection system based on two sets of
primer extension (PE) reactions, in which an unlabeled
primer that immediately anneals 5 to the relevant SNP is
extended with a single fluorochrome-labelled dideoxynu-
cleotide (ddNTP) complementary to the template strand
at the site of interest (Sokolov 1989), with 11 and 13 mar-
kers analysed in two capillary electrophoresis runs. Theo-
retical allelic frequencies of A. rufa — A. chukar hybrids
belonging to successive backcrossed offspring to A. rufa
were estimated and used to calculate powers and Type-I
error probabilities.

For SNP detection, we defined primers with the Pri-
mer 3 program v.0.4.0 (http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3.cgi) from the chicken sequence
for 110 highly conserved genes (Tables 1 and S1) in
multiple species including mammals (Aitken et al. 2004)
and obtained from GenBank®. These were used to
amplify DNA extracted from an initial reference panel
consisting of seven A. rufa partridges from different
wild areas of Spain, which had historically never been
restocked, and two A. chukar partridges from a Greek
farm. The polymorphisms obtained were validated on
161 samples (98 A. rufa from wild Spanish areas histori-
cally never restocked, and 63 A. chukar from Spanish
and Greek farms). All individuals were previously
checked for purity through STR, RAPD and mitochon-
drial markers (data not shown). The latter sampling
was performed on farms and commercial meat markets
based on the consideration that hybridization occurs
with farmed animals and not with wild ones. PCR
reactions were composed of 0.75 mm MgCl,, 025U
of Taq Polymerase (Biotools), 0.3 mm dNTPs, 0.5 um of
each primer and 10 ng of DNA in a total volume
of 10 pL. To select the optimal annealing temperature
of each primer (Table 1 and S1), we started with a gra-
dient cycle programme ranging from 53 to 63 °C. Reac-
tions started at 94 °C for 4 min followed by 34 cycles
of 50 s at 94 °C, 50 s at six different annealing tempera-
tures (53, 54.7, 57.3, 59, 61.5 and 63 °C), 50 s at 72 °C,
and final extension at 72 °C for 10 min. PCR fragments
were visualized in 1.5% ethidium bromide-stained
agarose gels.

The PCR products showing a strong band at the high-
est annealing temperature were subjected to SSCP elec-
trophoresis in 16% acrylamide-bisacrylamide 29:1 gels,
using the technique described by Barroso et al. (1998),

and silver stained, following the procedure described by
Bassam et al. (1991). Polymorphic bands were extracted
from gels, purified (High Pure PCR Product Purification
Kit; Roche) and sequenced [Big Dye Terminator v1.1
Cycle Sequencing Kit (Applied Biosystems)] in an
ABI3130 to identify the polymorphism.

Mitochondrial polymorphisms (ss107795934-39) were
detected by partially sequencing the D-loop fragment
(from 16731 to 829 nt.) (Desjardins & Morais 1990), using
primers  5-AGGACTACGGCTTGAAAAGC-3* and
5-TATGTCCGACAAGCATTCAC-3'". The sequences from
36 non-restocked A. rufa and 21 farm A. chukar partridges
were aligned with ClustalW (Thompson et al. 1994) and
polymorphism was inferred.

Twenty-four target sequences (23 genomic and 1 mito-
chondrial DNA polymorphisms) showing clear discrimi-
nation were chosen and amplified in two multiplex
reactions, one 11l-plex (Multiplex 1) and one 13-plex
(Multiplex 2). The SNP multimix for each amplification
reaction consisted of oligonucleotide primers at varying
concentrations ranging between 0.5 and 1 pm (Table 1),
1.25 pL. of QIAGEN® Multiplex PCR (Izasa, Spain) and
10 ng of DNA with a final volume of 3 pL. The thermal
cycling consisted of a first denaturation step at 95 °C for
15 min followed by 31 cycles of denaturation at 94 °C for
30 s, annealing at 57 °C for 1 min 30 s, and extension at
72 °C for 1 min with a final extension at 72 °C for 10 min.

PCR primers and unincorporated dNTPs were
removed by incubating 2.5 pL of PCR product at 37 °C
for 15 min with 5 U of Exonuclease I (Exol) and 1 U of
Shrimp alkaline phosphatase (SAP) (USB Corporation,
Germany), followed by enzyme inactivation through
heating at 80 °C for 30 min.

Following Sanchez et al. (2003) guidelines, different
lengths of PE primers ranging from 22 to 70 bases were
designed. Above 44 nt length a variable number of
nucleotides and/or a neutral oligonucleotide region
TAAACTAGGTGCCACGTCGTGAAAGTCTGACAA were
totally or partially added at the 5" end to generate longer
products following a test with BLAST to avoid any match
with other Alectoris sequences present in the multiplex.
All PE primers were desalted and purchased from INVI-
TROGEN™ (Groningen, The Netherlands). The PE
reaction was carried out in a 5 pL final volume contain-
ing 0.75 mm MgCl,, different concentrations of PE pri-
mers (Table 1), 0.2 U of Thermo Sequenase (Amersham
Biosciences Inc.), 225 um ddNTPs (Perkin Elmer) and
2 pL of cleaned PCR multiplex product. The thermal
cycling programme consisted of 1 min at 96 °C followed
by 34 cycles of 96 °C for 15 s, 58 °C for 15 s, and 60 °C for
15 s. Unincorporated ddNTPs were degraded by adding
0.33 U of SAP to 5 pL of the extension products, diluted
1:2 with Dilution Buffer. Two microlitre of multiplex
cleaned extension product was added to 15 pL Hi-Di"
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Formamide (Applied Biosystems) and 0.25 puL of Gene-
Scan'-120 LIZ™ internal size standard (Applied Biosys-
tems), before injection in an ABI 3130 sequencer using
POP-7® (Applied Biosystems). Data were analysed using
GeneMapper v4.0 (Applied Biosystems).

Allele frequencies were calculated and used to per-
form analytical Type-I error probability and power calcu-
lations for the 23 nuclear markers, and to select the most
powerful subset for a given significance level, when tes-
ting Hy = A. rufa vs. H; = hybrid from the kth back-
cross. In this test, an individual is rejected, i.e. identified
as a hybrid, when the number of markers showing the
presence of their so-called chukar allele exceeds a given
threshold. This is calculated to keep the Type-I error
probability below a certain level, set here to 0.1 to allow
for greater power in the detection of hybrids.

Starting from 112 sequences belonging to 110 different
G. gallus nuclear genes, a total of 109 SNPs and five
INDELs (dbSNP numbers ss105106807-84; ss107938223—

24; ss119759578; ss119759582; s5119759586; s5119759589;
$5119759592; ss119994664—-87; ss119993302—-06) located in
35 different genes (corresponding to chicken genes
updated in Alectoris and corresponding to GenBank
Accession numbers FI166021-FI166094; FI569711-
FI569716) were identified in the partridge genome
(Table 1). The search for SNPs in the rest of the genes (75)
was unsuccessful, either because no polymorphism was
found through SSCP (38 genes), because of sequencing
being impossible to perform although polymorphisms
appeared in SSCP (6 genes), or because chicken based
primers mismatched the Alectoris sequence (31 genes)
(Table S1). For the development of a medium throughput
method for Alectoris introgression detection by multi-
plex-PE, we chose one SNP at each gene sequence
(Table 1) with reasonably acceptable behaviour when
multiplexed, avoiding expected repetitive information
from linked markers, and, whenever possible, with fixed
alleles in both species. As introgression in A. rufa is

Table 2 Allele frequencies of 24 SNPs in Alectoris rufa and Alectoris chukar and their chromosomal allocation and relative position in the

Gallus gallus genome

Allele frequencies

Position in G. gallus Mutation A. rufa A. chukar
dbSNPs (Allele 1/
SNP locus Chromosome' Position® Distance’ accession®  Allele2)® Allele1l Allele2 Allele1 Allele2 Reproducibility®
AGC1 10 14.7 13.7 ss105106807 G/C 0.990 0.010 0.071 0.929 98
ALDOB V4 63.7 11.3 ss105106809 A/G 0.552 0.448 0.000 1.000 95
ARSA1 1 0.1 747 ss105106811 A/G 0.845 0.155 0.040 0.960 96
CFRT 1 101.4 15.0 ss105106812 T/C 0.958 0.042 0.058 0.942 98
CG3869_1 21 5.7 — ss105106813 A/G 0.918 0.082 0.085 0.915 100
CLU 3 108.0 105.3 ss105106814 C/T 0.371 0.629 0.000 1.000 95
GMCSF 13 17.2 1.1 ss105106815 C/T 0.773 0.227 0.008 0.992 99
GSN 17 9.1 — ss105106817 A/T 0.907 0.093 0.025 0.975 97
HBB 1 199.4 83.0 ss105106824 T/C 1.000 0.000 0.210 0.790 100
LAMC1 7.8 — ss105106832 T/C 0.903 0.097 0.038 0.962 100
MNK 4 13.0 8.6 ss105106833 T/A 0.990 0.010 0.524 0.476 100
MPO 19 0.4 — 55105106834 A/T 0.947 0.053 0.000 1.000 100
NID 44 8.6 ss105106835 T/C 1.000 0.000 0.302 0.698 100
OTC 1 116.5 15.0 55105106842 A/T 0.500 0.500 0.355 0.645 95
OXT 4 92.0 79.0 ss105106843 T/G 0.825 0.175 0.024 0.976 97
PDE6B Z 52.4 11.3 ss105106845 C/G 0.929 0.071 0.009 0.991 100
PKM2 10 1.0 13.7 ss105106847 C/A 0.897 0.103 0.000 1.000 97
PTHLH 1 74.8 26.6 ss105106851 G/C 1.000 0.000 0.016 0.984 100
RET 59 — ss105106862 T/C 1.000 0.000 0.740 0.260 98
SPTBN1 3 27 105.3 ss105106870 A/G 0.976 0.024 0.009 0.991 100
PCBD2 13 16.1 1.1 ss105106872 T/C 0.974 0.026 0.024 0.976 96
THBS1 5 31.9 — ss105106874 G/A 0.964 0.036 0.008 0.992 100
TNFAIP6 7 36.8 — ss105106875 C/T 0.933 0.067 0.025 0.975 96
Dloop SNP1-R  MT — — ss107795934 A/G 1.000 0.000 0.000 1.000 100

'Gallus gallus chromosome in which the sequence obtained in this study matched when tested with LasT. *Position on G. gallus
chromosome expressed in Mb. *Distance (in Mb) from closest SNP used in multiplex. The symbol ‘—’ means that no other SNP is allocated
in the chromosome. *GenBank accession ne for SNP in Alectoris. Polymorphism in Alectoris sequence. *Reproducibility percentage in

duplicate PCRs for each sample.

© 2009 Blackwell Publishing Ltd



8 MOLECULAR DIAGNOSTICS AND DNA TAXONOMY

mainly caused by A. chukar, 23 nuclear SNPs and one
mitochondrial polymorphism (inferred by sequencing of
D-loop region), resolved in two capillary runs of two
PCR multiplex previously hybridized by primer exten-
sion (Sokolov 1989) were selected as the most powerful
battery to detect introgression only by accounting for the
presence of chukar alleles. Reproducibility was tested by
performing PCR in duplicate for all samples. Those SNPs
not showing at least 94% reproducibility were discarded,
due either to a low primer affinity with the target
sequence, or to the existence of some interaction
adversely affecting PE primer binding.

Allele frequencies were calculated (Table2) to
perform analytical Type-I error probability and power
calculations. The power of hybrid detection was calcu-
lated for a given significance level of o = 0.1 and several
degrees of backcrossing. First, the whole 23 nuclear mar-
ker battery was tested. Then five markers (ALDOB, CLU,
GMCSF, MNK, and OTC) were excluded on the basis of
their highly intermediate frequencies. Power analysis
was performed again with the reduced battery of 18 mar-
kers, and finally an optimum subset of markers was cho-
sen to maximize power by checking all the possible
subsets of any size. This check discarded three of the 18
(ARSA, OXT, and PKM2, all of them showing reasonably
extreme frequencies for the chukar allele, but not so
extreme for the A. rufa allele), and thus the final set of 15
markers with maximum B3 (an F1 A. rufa x A. chukar
backcrossed three consecutive times with A. rufa) detec-
tion power was established. This marker subset shows a
detection power of 1; 0.99567; 0.84296, and 0.52355 for an
F1 A. rufa x A. chukar, and three consecutive backcrosses
with A. rufa B1, B2, and B3, respectively, with an asso-
ciated Type-I error probability of 0.0984. No further back-
cross levels were checked because of the very low
percentage of A. chukar present (3% in a B4 backcrossing,
for example).

Evidence from isolated populations suggested that
linkage disequilibrium extends to a few hundred kilo-
bases (Collins ef al. 2001). In our study, the shortest dis-
tance in G. gallus between two multiplexed SNPs
(GMCSF vs. PCBD2) was 1.1 Mb, while the rest of the
pair-wise distances among SNPs were >8 Mb (see
Table 2). Consequently, the assumption of independence
was reasonable with regard to physical linkage.

Although arrayed PE assays (Deshpande et al.
2005; Pullat & Metspalu 2008) are being developed
with more recent state-of the art technology, the eco-
nomic value of a partridge does not justify the appli-
cation of expensive procedures. Our aim was to
obtain a low-cost system that allowed analysis of a
large number of individuals in a short time (Sanchez
et al. 2003; Dixon et al. 2005). Primer extension is a
simple, flexible and low-cost technique for fast geno-

typing of few SNPs in a few hundred individuals at
a reasonable price with no need for an expensive
infrastructure.

In conclusion, we show here that a domestic species,
like G. gallus, can be used effectively to develop SNPs in a
divergent genus, such as Alectoris. Moreover, the number
of newly identified polymorphisms in the Alectoris geno-
me and the simple and efficient SNP typing assay develo-
ped in the present study, compared with STRs and
RAPDs, can be applied to the genetic control of reproduc-
tive-bred individuals in hunting areas and on
farms before restocking, thus limiting any harm to wild
populations.
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