MOLECULAR DIAGNOSTICS AND DNA TAXONOMY
 New single nucleotide polymorphisms in Alectoris identified using chicken genome information allow Alectoris introgression detection

N. SEVANE, O. CORTÉS, D. GARCÍA, J. CAÑÓN and S. DUNNER
Department of Animal Production, Veterinary Faculty, Universidad Complutense, 28040 Madrid, Spain

Abstract

Using the chicken genome, 114 polymorphisms (109 SNPs and 5 INDELs) were identified in the Alectoris genus by polymerase chain reaction-single strand conformation polymorphism. Using these, a panel of SNPs is described, which allows easy detection of introgression of Alectoris chukar in wild Alectoris rufa populations, when used with a primer extension protocol. The selected polymorphisms were genotyped and their allelic frequencies estimated on 98 A. rufa partridges sampled from nonrestocking Spanish areas, and 63 A . chukar partridges from Greek and Spanish farms. Power calculations to determine an optimum subset of markers for a given significance level were performed.

Keywords: hybridization, partridge, primer extension, SNPs
Received 4 March 2009; revision received 13 April 2009; 27 April 2009; accepted 30 April 2009

The main Alectoris species of the Mediterranean area are the red-legged partridge (Alectoris rufa), the rock partridge (Alectoris graeca), and the chukar partridge (Alectoris chukar), which show a small overlapping area (Johnsgard 1988). As a consequence, natural interbreeding between A. rufa and A. graeca (Bernard-Laurent 1984) and A. graeca and A. chukar (Dragoev 1974) can occur, but hybridization between A. rufa and A. chukar partridges should not. However, several studies have recorded cases of artificial genetic pollution of A. rufa and A. graeca by A. chukar (Randi et al. 2003; Barilani et al. 2006; Barbanera et al. 2007). Alectoris genus includes species with important cynegetic characteristics in European countries (Vargas et al. 2006) and, as wild partridge populations decrease (Negro et al. 2001; González 2004), numerous hunting areas across the countries are periodically reinforced with millions of captive-bred individuals (Negro et al. 2001). These captive individuals are the result of wild A. rufa and non-native species that have a better growth rate and adaptation to captivity as a result of artificial selection like A. chukar (Baratti et al. 2004; Barbanera et al. 2005), and uncontrolled restocking of hybrids may lead to a widespread introgression of foreign species in locally adapted partridge species (Allen-

[^0]dorf et al. 2001; Barilani et al. 2007; Barbanera et al. 2009). Identification of hybrids by phenotypic characteristics (e.g. plumage) appears to be difficult beyond the first cross generation (Negro et al. 2001; Barilani et al. 2007). However, the detection of these advanced hybrids is crucial to avoid introgression by removal of hybrids or by a captive-breeding programme that allows strict control of farming and restocking with captive-reared birds (Allendorf et al. 2001). Although some efforts have led to the development of microsatellites (Baratti et al. 2004; González et al. 2005) or randomly amplified polymorphic DNA (RAPD) markers (Cortés et al. 2001; Negro et al. 2001), the identification of SNPs in the Alectoris genome is crucial for the easy analysis of large amounts of animals in a short time (Sanchez et al. 2006), because of the biallelic condition of these markers, which makes them easy to validate and to genotype with high-throughput technologies. The difficulty of developing a hybridization technique based on SNPs in the Alectoris species lies in the fact that there is rather scarce information about the partridge genome. To be able to use a better alternative to STR or RAPD for Alectoris hybrid identification, here we identify 109 SNPs and five INDELs located in 35 different genes in the partridge genome by polymerase chain reactionsingle strand conformation polymorphism (PCR-SSCP) of fragments chosen on the basis of the Gallus gallus genome. Alectoris rufa and A. chukar samples were used to detect polymorphism and to estimate subsequent allele
frequencies. Although some commercial applications are available (e.g. SNPlex or Veracode), which allow screening of a few mutations (a minimum of 48) in a reduced number of individuals, here we have developed a me-dium-throughput method for which we chose the 23 most informative polymorphisms of the 114 genomic polymorphisms, together with one located in the mitochondrial genome. Several PCR multiplexes were built and resolved in an SNP detection system based on two sets of primer extension (PE) reactions, in which an unlabeled primer that immediately anneals 5^{\prime} to the relevant SNP is extended with a single fluorochrome-labelled dideoxynucleotide (ddNTP) complementary to the template strand at the site of interest (Sokolov 1989), with 11 and 13 markers analysed in two capillary electrophoresis runs. Theoretical allelic frequencies of A. rufa - A. chukar hybrids belonging to successive backcrossed offspring to A. rufa were estimated and used to calculate powers and Type-I error probabilities.

For SNP detection, we defined primers with the Primer 3 program v.0.4.0 (http://frodo.wi.mit.edu/cgibin/primer3/primer3.cgi) from the chicken sequence for 110 highly conserved genes (Tables 1 and S1) in multiple species including mammals (Aitken et al. 2004) and obtained from GenBank ${ }^{\circledR}$. These were used to amplify DNA extracted from an initial reference panel consisting of seven A. rufa partridges from different wild areas of Spain, which had historically never been restocked, and two A. chukar partridges from a Greek farm. The polymorphisms obtained were validated on 161 samples (98 A. rufa from wild Spanish areas historically never restocked, and 63 A. chukar from Spanish and Greek farms). All individuals were previously checked for purity through STR, RAPD and mitochondrial markers (data not shown). The latter sampling was performed on farms and commercial meat markets based on the consideration that hybridization occurs with farmed animals and not with wild ones. PCR reactions were composed of $0.75 \mathrm{~mm} \mathrm{MgCl} 2,0.25 \mathrm{U}$ of Taq Polymerase (Biotools), 0.3 mm dNTPs, $0.5 \mu \mathrm{~m}$ of each primer and 10 ng of DNA in a total volume of $10 \mu \mathrm{~L}$. To select the optimal annealing temperature of each primer (Table 1 and S1), we started with a gradient cycle programme ranging from 53 to $63^{\circ} \mathrm{C}$. Reactions started at $94^{\circ} \mathrm{C}$ for 4 min followed by 34 cycles of 50 s at $94^{\circ} \mathrm{C}, 50 \mathrm{~s}$ at six different annealing temperatures ($53,54.7,57.3,59,61.5$ and $63^{\circ} \mathrm{C}$), 50 s at $72^{\circ} \mathrm{C}$, and final extension at $72{ }^{\circ} \mathrm{C}$ for 10 min . PCR fragments were visualized in 1.5% ethidium bromide-stained agarose gels.

The PCR products showing a strong band at the highest annealing temperature were subjected to SSCP electrophoresis in 16\% acrylamide-bisacrylamide 29:1 gels, using the technique described by Barroso et al. (1998),
and silver stained, following the procedure described by Bassam et al. (1991). Polymorphic bands were extracted from gels, purified (High Pure PCR Product Purification Kit; Roche) and sequenced [Big Dye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems)] in an ABI3130 to identify the polymorphism.

Mitochondrial polymorphisms (ss107795934-39) were detected by partially sequencing the D-loop fragment (from 16731 to 829 nt .) (Desjardins \& Morais 1990), using primers 5'-AGGACTACGGCTTGAAAAGC-3' and 5^{\prime}-TATGTCCGACAAGCATTCAC-3'. The sequences from 36 non-restocked A. rufa and 21 farm A. chukar partridges were aligned with ClustalW (Thompson et al. 1994) and polymorphism was inferred.

Twenty-four target sequences (23 genomic and 1 mitochondrial DNA polymorphisms) showing clear discrimination were chosen and amplified in two multiplex reactions, one 11-plex (Multiplex 1) and one 13-plex (Multiplex 2). The SNP multimix for each amplification reaction consisted of oligonucleotide primers at varying concentrations ranging between 0.5 and $1 \mu \mathrm{M}$ (Table 1), $1.25 \mu \mathrm{~L}$ of QIAGEN ${ }^{\circledR}$ Multiplex PCR (Izasa, Spain) and 10 ng of DNA with a final volume of $3 \mu \mathrm{~L}$. The thermal cycling consisted of a first denaturation step at $95^{\circ} \mathrm{C}$ for 15 min followed by 31 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $57^{\circ} \mathrm{C}$ for 1 min 30 s , and extension at $72{ }^{\circ} \mathrm{C}$ for 1 min with a final extension at $72{ }^{\circ} \mathrm{C}$ for 10 min .

PCR primers and unincorporated dNTPs were removed by incubating $2.5 \mu \mathrm{~L}$ of PCR product at $37^{\circ} \mathrm{C}$ for 15 min with 5 U of Exonuclease I (ExoI) and 1 U of Shrimp alkaline phosphatase (SAP) (USB Corporation, Germany), followed by enzyme inactivation through heating at $80^{\circ} \mathrm{C}$ for 30 min .

Following Sanchez et al. (2003) guidelines, different lengths of PE primers ranging from 22 to 70 bases were designed. Above 44 nt length a variable number of nucleotides and/or a neutral oligonucleotide region TAAACTAGGTGCCACGTCGTGAAAGTCTGACAA were totally or partially added at the 5^{\prime} end to generate longer products following a test with BLAST to avoid any match with other Alectoris sequences present in the multiplex. All PE primers were desalted and purchased from INVITROGEN ${ }^{\text {TM }}$ (Groningen, The Netherlands). The PE reaction was carried out in a $5 \mu \mathrm{~L}$ final volume containing $0.75 \mathrm{~mm} \mathrm{MgCl}_{2}$, different concentrations of PE primers (Table 1), 0.2 U of Thermo Sequenase (Amersham Biosciences Inc.), $225 \mu \mathrm{~m}$ ddNTPs (Perkin Elmer) and $2 \mu \mathrm{~L}$ of cleaned PCR multiplex product. The thermal cycling programme consisted of 1 min at $96^{\circ} \mathrm{C}$ followed by 34 cycles of $96^{\circ} \mathrm{C}$ for $15 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 15 s , and $60^{\circ} \mathrm{C}$ for 15 s . Unincorporated ddNTPs were degraded by adding 0.33 U of SAP to $5 \mu \mathrm{~L}$ of the extension products, diluted 1:2 with Dilution Buffer. Two microlitre of multiplex cleaned extension product was added to $15 \mu \mathrm{~L} \mathrm{Hi}_{\mathrm{-Di}}{ }^{\mathrm{TM}}$
Table 1. Genes tested in Alectoris genus based on G.gallus gene information, polymorphisms identified (SNP and INDEL) with flanking sequence in Alectoris genus. For the chosen

GenBank accession G. gallus ${ }^{1}$	Gene G. gallus ${ }^{2}$	G. gallus primers ($\left.5^{\prime}->3^{\prime}\right)^{3}$	G. gallus length ${ }^{4}$	Annealing Temp ($\left.{ }^{\circ} \mathrm{C}\right)$	GenBank Acc.No A. Rufa ${ }^{5}$	GenBank Acc.No A.chukar ${ }^{6}$	Number of SNPs/ INDELs	dbSNPs accession ${ }^{7}$
NW_001471428	AGC1	F_CAGAGCAGTTCACCTTCCAA	210	59	F1166058	F1166021	2	ss105106807
		R_GCTGGTAGATGGTCCTCACA						ss119759578
NW_001488884	ALDOB	F_TCAGACATTGCTCAGAGGAT	220	59	F1166060	F1166023	3	ss105106809-10
		R_TGTTCTTCCACTTTAGATGC						ss119994664
NW_001471519	ARSA1	F_CCTCCACTCAGCACTTCTAC	229	61	F1166061	F1166024	1	ss105106811
		R_TAAGCCTTGTTTCCCTTTAG						
NW_001471532	CFRT	F_CGGTtTACCCTGACATTTTA	293	55	F1166062	F1166025	1	ss105106812
		R_ACTTGTTCTTTTCССТСТСС						
NW_001471572	CG3869_1	F_TGCCCTCTACTGGTCTAAGT	260	55	F1166063	F1166026	5	ss105106813 ss119994665-68
		R_GACTCTCATCCTTGTGGGTA						
NW_001471673	CLU	F_CAACCCTAATACGAGACAGC	350	55	F1166064	F1166027	2	ss105106814
		R_ACTTCACCGACAAACATTTC						ss119994669
NW_001471449	GMCSF	F_GCAGTAAGTTCCTCTTGGTG	232	55	F1166065	F1166028	2	ss105106815-16
		R_AATACCTTTCCCCAGATTTC						
NW_001471503	GSN	F_ATCGTGCCTACCAGAAACTA	320	55	F1166066	F1166029	8	ss105106817-23 ss105106881
		R_CACCTCCTTACCATCCATAA						
NW_001471556	HBB	F_ACACCTTCTCCCAACTGTC	266	59	F1166067	F1166030	8	ss105106824-31
		R_СССТТСАТТССТТТСТСАСТ						
NW_001471737	LAMC1	F_CTCTTACTGACCCTGTGCTC	273	57	F1166068	F1166031	2	ss105106832 ss119994670
		R_CCTGGTGATTCTATGATGCT						
NW_001471681	MNK	F_CTTGTGCCTCAGGTAAAGTC	237	61	F1166069	F1166032	2	ss119994670 ss105106833 ss119993302
		R_ATCTGTAGGTTGGGTTGTTG						
NW_001471508	MPO	F_CCCACCAAGTATGTCACTCT	234	53	F1166070	F1166033	1	ss105106834
		R_TGAATCCTACCCAGTTTTTG						
NW_001471681	NID	F_GCTCTTCTGCTCAGGACTT	324	59	F1166071	F1166034	4	ss105106835-37 ss119994671
		R_CCCAGTTCACTTCTCTTCTG						
NW_001471534	ОтС	F_CCAGTCTCTTCCTTGTTTTG	228	57	F1166073	F1166036	3	ss105106842 ss119994672-73
		R_TTAGCCTTATTTGCCACAGT						
NW_001471688	OxT	F_TATCCCACAGAGAGCACTTC	332	55	F1166074	F1166037	2	ss105106843-44
		R_CAACCTCAGTTTTTCCTCAG						
NW_001488875	PDE6B	F_TTTATCCACCAAATAGTCCAA	221	55	F1166075	F1166038	3	ss105106845 ss119759589 ss119759592
		R_GCCATTCAGGTTTATGTGAT						
NW_001471423	PKM2	F_CTTGGGAGGTGACAGACAT	303	57	F1166077	F1166040	3	ss105106847-48 ss119994675
		R_CAATAGGTTCAGCAGGGTAG						
NW_001471518	PTHLH	F_GCAGACTGTGAGTTACCTGAA	344	59	F1166079	F1166042	6	$\begin{aligned} & \text { ss105106851-54 } \\ & \text { ss107938223-24 } \end{aligned}$
		R_ATGGCATTTCGTATTACCTG						
NW_001471714	RET	F_AGTGGTTCAGTCCAGTTCCA	249	57	F1166082	F1166045	6	ss105106862-65 ss119994676-77
		R_TACACCTCCCGTAATCCTCA						

Table 1. Continued

GenBank accession G. gallus ${ }^{1}$	Gene G. gallus ${ }^{2}$	G. gallus primers $\left(5^{\prime}->3^{\prime}\right)^{3}$	G. gallus length ${ }^{4}$	Annealing Temp (${ }^{\circ} \mathrm{C}$)	GenBank Acc.No A. Rufa ${ }^{5}$	GenBank Acc.No A.chukar ${ }^{6}$	Number of SNPs/ INDELs	dbSNPs accession 7
NW_001471675	SPTBN1	F_GCTTCTTGTTCCCACTCTCA	249	53	F1166084	F1166047	2	ss105106870-71
		R_TTCCCGACTGAATCAATGTT						
NW_01471449	PCBD2	F_GGATTTCAGTGAGGTCAGGA	293	57	F1166085	F1166048	4	ss105106872-73
		R_CAGTGCTTTGGTCTGTGTGT						ss119759582
								ss119759586
NW_001471710	THBS1	F_GTGAGGGTGAAGCAAGAGAA	267	61	F1166086	F1166049	1	ss105106874
		R_ACAGAATGGCAGCCGTAAT						
NW_001471733	TNFAIP6	F_CTGTGTTGAGCAGGAAGAGA	350	59	F1166087	F1166050	9	ss105106875-79
		R_AGCGTGAGCCTACCCTAAAT						ss105106882-84
								ss119993306
					AJ586225	-	6	ss107795934-39
NW_001471744	AHCY	F_TAACTGAGCACACAGCAAAC	345	59	F1166059	F1166022	1	ss105106808
		R_ACAGAAATGGGATAAACTGG						
NW_001471722	OAT	F_TTTCCAAGGATACACCAGTC	268	55	F1166072	F1166035	4	ss105106838-41
		R_ACTCTTCTGCTTTTCAACCA						
NW_001472038	PFKM	F_GCACCTACTGGAAGTCTGTC	225	59	F1166076	F1166039	6	ss105106846
		R_CCTGCTGCTCTATTTCAAAG						ss119994674
								ss119994678
								ss119993303-05
NW_001471715	PLAU	F_CCCAACATAGAGGTAAGCAT	235	55	F1166078	F1166041	2	ss105106849-50
		R_GCTGAAGAAGCGATAGGTAA						
NW_001471454	PVALB	F_CCATCACTGACATCCTTTCT	257	55	F1166080	F1166043	2	ss105106855-56
		R_GCTCTTACTGCCACTCTGTT						
NW_001471554	RB1	F_TGTCTGGCTTTTCCTCTGTC	329	55	F1166081	F1166044	5	ss105106857-61
		R_CAGTCCCTGCCCTATCTTTT						
NW_001471668	SOD2	F_TCTGACAGTCGTTTGACCTG	336	55	F1166083	F1166046	4	ss105106866-69
		R_AACCTACTCCCCAAGACCAC						
NW_001471686	DCUN1D4	F_TAGTCTGATGGGTTGAGTCC	224	55	F1166088	F1166051	1	ss105106880
		R_TGGAAACTGAGATGTTAGGAA						
NW_001471572	CG3869_2	F_CACTGCTGACTGGGAGATAC	324	59	FI569716	-	1	ss119994681
		R_GGATTATTTCCTGATGTCCA						
NW_001471572	CG3869_4	F_CATCAGCATTTATCTGCCAGT	289	59	F1569715	-	2	ss119994679-80
		R_GGGAGGATTGTTTCTGTGTG						
NW_001471681	F9	F_CTACCTGAGCCTTGAAACAC	244	55	F1569711	-	1	ss119994682
		R_TTTGTGGGTGAAGTTCTGA						
NW_001471695	FSHB	F_TTCATACACAACCTCCTTGA	200	55	F1569712	-	1	ss119994683
		R_TTGATTTCAGTGGGATTTTC						
NW_001471633	GLB1	F_TACAGCCACAGAAACCATAG	212	61	F1569713	-	1	ss119994684
		R_TGGGAAGAAGGTAAGAAGGT						
NW_001471508	GUSB	F_TTTTAGTGCGGTATGACCTT	300	55	FI569714	-	3	ss119994685-87
		R_ATGTAACCAAGCAGCAGAAT						

Table 1. Continued

GenBank accession G. gallus ${ }^{1}$	Gene G. gallus ${ }^{2}$	Multiplex primers $\left(5^{\prime}->3^{\prime}\right)^{8}$	Final primer conc $(\mu \mathrm{M})^{9}$	Multiplex ${ }^{10}$	dbSNPs accession ${ }^{11}$	$\begin{aligned} & \text { Poly } \\ & (\mathrm{dNTP})^{12} \end{aligned}$	Neutral Sequence $\left(5^{\prime}->3^{\prime}\right)^{13}$	Target specific sequence ${ }^{14}$	Mutation ${ }^{15}$	Final primer conc $(\mu \mathrm{M})^{16}$	Primer size ${ }^{17}$
NW_001471428	AGC1	F_CAGAGCAGTTCACCTTCCAA R_GCTGGTAGATGGTCCTCACA	0.5	1	ss105106807	None	None	F_GCGGTACCCCATT GTGAGCCCCCGGCCC GCCTGTGG	G/C	0.5	36
NW_001488884	ALDOB	F_TCAGACATTGCTCAGAGGAT R_CACTTTAGATGCAGCTCTGG	1	2	ss105106809	None	None	R_CACTTTAGATGCAG CTCTGGGT	A/G	1	22
NW_001471519	ARSA1	F_ССТССАСТСАGCACTTCTAC R_GAGGTCCTGTACCCCAGTAA	0.5	1	ss105106811	None	None	F_CATCGGGCTCCTGT CCATATCC	A/G	0.5	22
NW_001471532	CFRT	F CATCTAGGTTCTGTCTGTTTTG R_ITTAGGACTGAAGAAAGTGCAT	0.5	2	ss105106812	None	None	F CAGAAATAAGACAT tTATAAGATTTTACTTT gGaAGAAAG	T/C	0.5	30
NW_001471572	CG3869_1	F_tgccctctactgatctangt R_GACTCTCATCCTTGTGGGTA	1	1	ss105106813	12(dC)	tagacagtag agcagataga CC	R_TAGATGACTTGGAT GACTTCTGGAAG	A/G	1	60
NW_001471673	CLU	F_CAACCCTAATACGAGACAGC R CAACACCAACTCATCCCTCT	0.5	1	ss105106814	None	None	F_ATGGGTTTTGGGGT GGtTTTTGCC	C/T	0.5	24
NW_001471449	GMCSF	F_GCAGTAAGTTCCTCTTGGTG R_TCTGGAGCAAATGCAGTG	0.5	1	ss105106815	None	None	F_TTGCCTCAGCTCCC AGATTTCTTTTCTG	C/T	0.5	28
NW_001471503	GSN	F_ATCGTGCCTACCAGAAACTA R_AGCAGTGGGAGCTGTACTTC	0.5	2	ss105106817	$\begin{array}{r} 12(\mathrm{dC})+ \\ 4(\mathrm{dCT}) \end{array}$	TAGACAGTAG AGCAGATA	F_СССТТТССТТТАСС ACTGCA	A/T	0.5	58
NW_001471556	HBB	F_ACCTTCTCCCAACTGTCTGA R_СССТТСАТТССТТТСТСАСТ	1	1	ss105106824	None	GAGCAGATAG ACCAAGA	F_GCTGTGCTCTTGG CCAGGTCCCATCCCA ACG	T/C	1	48
NW_001471737	LAMC1	F_CTCTTACTGACCCTGTGCTC R_CCTGGTGATTCTATGATGCT	0.5	2	ss105106832	None	None	F_GCAGCTTCACCTGT gttctctata	T/C	0.5	24
NW_01471681	MNK	F_CTTGTGCCTCAGGTAAAGTC R_TGGGTTGTTGGTTGGACT	1	1	ss105106833	None	None	R_GGTTGGGTTGTTG GTTGGACTTGATGATC gTGGAGG	T/A	1	36
NW_001471508	MPO	F CCCACCAAGTATGTCACTCT R_TGAATCCTACCCAGTTTTTG	0.5	2	ss105106834	None	None	R_ATCGTCGACCTTAT tTGAAGTGTGAATGCA CAA	A/T	0.5	33
NW_001471681	NID	F_GCTCTTCTGCTCAGGACTT R_GCTGTGAACTTGCACATAACAA	0.5	1	ss105106835	None	None	F_TGGAGGGGATGTT tTCTGGTAATCCCCAG AGCTA	T/C	0.5	34
NW_001471534	ОтС	F_CCAGTCTCTTCCTTGTTTTG R_GGTGGATTAGCATGGCATA	0.5	2	ss105106842	None	None	F_TCAGGGCGTGATTA aAACAGAAATGCAGA GAA	A/T	0.5	32
NW_001471688	OXT	F_TATCCCACAGAGAGCACTTC R_CAAGATCCCTTCCTGTTGG	1	1	ss105106843	None	None	F_TtTTCTGCATATGCTGC agatanacat	T/G	1	28

Table 1. Continued

GenBank accession G. sallus ${ }^{1}$	Gene G. gallus ${ }^{2}$	Multiplex primers $\left(5^{\prime}->3^{\prime}\right)^{8}$	Final primer conc $(\mu \mathrm{M})^{9}$	Multiplex ${ }^{10}$	dbSNPs accession ${ }^{11}$	$\begin{aligned} & \text { Poly } \\ & (\mathrm{dNTP})^{12} \end{aligned}$	Neutral Sequence $\left(5^{\prime} \rightarrow 3^{\prime}\right)^{13}$	Target specific sequence ${ }^{14}$	Mutation ${ }^{15}$	Final primer conc $(\mu \mathrm{M})^{16}$	$\begin{aligned} & \text { Primer } \\ & \text { size }^{17} \end{aligned}$
NW_001488875	PDE6B	F_TTTATCCACCAAATAGTCCAA R_TCTGAGGAGTATGAGGGGTAAT	0.5	2	ss105106845	6(dCT)	None	F_CTCTTTCAGCAGAC atagtgcagtgcanta CTGA	C/G	0.5	46
NW_001471423	РКМ2	F_CAATAGGTTCAGCAGGGTAG R_CTGCCTCTTCСTGTTCTACA	0.5	2	ss105106847	None	None	F_GССТСТTССТGTTC tacacagcacctcta CCAGCAG	C/A	0.5	29
NW_001471518	PTHLH	F_GCAGACTGTGAGTTACCTGAA R_CTGCAGCAGCCCGATGAAA	1	1	ss105106851	None	None	R_GCCCAAACCGTGC CCAGAGCACCTGAGG CAGG	G/C	1	32
NW_001471714	RET	F_AGTGGTTCAGTCCAGTTCCA R_TACACCTCCCGTAATCCTCA	0.5	2	ss105106862	15(dTC)	TAGACAGTAG AGCAGATAGA	F_GTGGTGTGTACAAT TAAATA	T/C	0.5	70
NW_001471675	SPTBN1	F_GCTTCTTGTTCCCACTCTCA R_TTCCCGACTGAATCAATGTT	1	2	ss105106870	18(dCT)	AGACCAAGA	R_GAGAGGTGCAAGC TAGAAAGGC	A/G	1	67
NW_001471449	PCBD2	F_GGATTTCAGTGAGGTCAGGA R_GTACACAGACCACAGGAAGG	0.5	2	ss105106872	None	None	F_AATCACCACCCAGA atgGtttancgictac agcangataa	T/C	0.5	40
NW_001471710	THBS 1	F GTGAGGGTGAAGCAAGAGAA R_GGCTCCACAGAAAACTCG	0.5	1	ss105106874	None	None	F_GCTGCCATGTACTG GACTTCTAGTGGTCTT TAAAC	G/A	0.5	35
NW_001471733	TNFAIP6	F_CTGTGTTGAGCAGGAAGAGA R_AGCGTGAGCCTACCCTAAAT	0.5	2	ss105106875	None	None	R_GTGTCCCAGAGCT gTGGATGTGGCACTG	C/T	0.5	28
-	-	F_AGGACTACGGCTTGAAAAGC R_TATGTCCGACAAGCATTCAC	0.5	2	ss107795934	None	taAACTAGGT GCCACGTCGTG AAAGTCTGACAA	R_TACGACTGGCATAA CCA	A/G	0.5	51

[^1]Formamide (Applied Biosystems) and $0.25 \mu \mathrm{~L}$ of GeneScan ${ }^{\text {TM }}-120$ LIZ $^{\text {TM }}$ internal size standard (Applied Biosystems), before injection in an ABI 3130 sequencer using POP- 7^{\circledR} (Applied Biosystems). Data were analysed using GeneMapper v4.0 (Applied Biosystems).

Allele frequencies were calculated and used to perform analytical Type-I error probability and power calculations for the 23 nuclear markers, and to select the most powerful subset for a given significance level, when testing $\mathrm{H}_{0} \equiv A$. rufa vs. $\mathrm{H}_{1} \equiv$ hybrid from the k th backcross. In this test, an individual is rejected, i.e. identified as a hybrid, when the number of markers showing the presence of their so-called chukar allele exceeds a given threshold. This is calculated to keep the Type-I error probability below a certain level, set here to 0.1 to allow for greater power in the detection of hybrids.

Starting from 112 sequences belonging to 110 different G. gallus nuclear genes, a total of 109 SNPs and five INDELs (dbSNP numbers ss105106807-84; ss107938223-

24; ss119759578; ss119759582; ss119759586; ss119759589; ss119759592; ss119994664-87; ss119993302-06) located in 35 different genes (corresponding to chicken genes updated in Alectoris and corresponding to GenBank Accession numbers FI166021-FI166094; FI569711FI569716) were identified in the partridge genome (Table 1). The search for SNPs in the rest of the genes (75) was unsuccessful, either because no polymorphism was found through SSCP (38 genes), because of sequencing being impossible to perform although polymorphisms appeared in SSCP (6 genes), or because chicken based primers mismatched the Alectoris sequence (31 genes) (Table S1). For the development of a medium throughput method for Alectoris introgression detection by multi-plex-PE, we chose one SNP at each gene sequence (Table 1) with reasonably acceptable behaviour when multiplexed, avoiding expected repetitive information from linked markers, and, whenever possible, with fixed alleles in both species. As introgression in A. rufa is

Table 2 Allele frequencies of 24 SNPs in Alectoris rufa and Alectoris chukar and their chromosomal allocation and relative position in the Gallus gallus genome

SNP locus	Position in G. gallus			dbSNPs accession ${ }^{4}$	Mutation (Allele 1/ Allele 2) ${ }^{5}$	Allele frequencies				Reproducibility ${ }^{6}$	
				A. rufa		A. chukar					
	Chromosome ${ }^{1}$	Position ${ }^{2}$	Distance ${ }^{3}$			Allele 1	Allele 2	Allele 1	Allele 2		
AGC1	10	14.7	13.7		ss105106807	G/C	0.990	0.010	0.071	0.929	98
ALDOB	Z	63.7	11.3	ss105106809	A/G	0.552	0.448	0.000	1.000	95	
ARSA1	1	0.1	74.7	ss105106811	A/G	0.845	0.155	0.040	0.960	96	
CFRT	1	101.4	15.0	ss105106812	T/C	0.958	0.042	0.058	0.942	98	
CG3869_1	21	5.7	-	ss105106813	A/G	0.918	0.082	0.085	0.915	100	
CLU	3	108.0	105.3	ss105106814	C / T	0.371	0.629	0.000	1.000	95	
GMCSF	13	17.2	1.1	ss105106815	C / T	0.773	0.227	0.008	0.992	99	
GSN	17	9.1	-	ss105106817	A/T	0.907	0.093	0.025	0.975	97	
HBB	1	199.4	83.0	ss105106824	T/C	1.000	0.000	0.210	0.790	100	
LAMC1	8	7.8	-	ss105106832	T/C	0.903	0.097	0.038	0.962	100	
MNK	4	13.0	8.6	ss105106833	T/A	0.990	0.010	0.524	0.476	100	
MPO	19	0.4	-	ss105106834	A/T	0.947	0.053	0.000	1.000	100	
NID	4	4.4	8.6	ss105106835	T/C	1.000	0.000	0.302	0.698	100	
OTC	1	116.5	15.0	ss105106842	A/T	0.500	0.500	0.355	0.645	95	
OXT	4	92.0	79.0	ss105106843	T/G	0.825	0.175	0.024	0.976	97	
PDE6B	Z	52.4	11.3	ss105106845	C/G	0.929	0.071	0.009	0.991	100	
PKM2	10	1.0	13.7	ss105106847	C/A	0.897	0.103	0.000	1.000	97	
PTHLH	1	74.8	26.6	ss105106851	G/C	1.000	0.000	0.016	0.984	100	
RET	6	5.9	-	ss105106862	T/C	1.000	0.000	0.740	0.260	98	
SPTBN1	3	2.7	105.3	ss105106870	A/G	0.976	0.024	0.009	0.991	100	
PCBD2	13	16.1	1.1	ss105106872	T/C	0.974	0.026	0.024	0.976	96	
THBS1	5	31.9	-	ss105106874	G / A	0.964	0.036	0.008	0.992	100	
TNFAIP6	7	36.8	-	ss105106875	C / T	0.933	0.067	0.025	0.975	96	
Dloop SNP1-R	MT	-	-	ss107795934	A/G	1.000	0.000	0.000	1.000	100	

${ }^{1}$ Gallus gallus chromosome in which the sequence obtained in this study matched when tested with BLAST. ${ }^{2}$ Position on G. gallus chromosome expressed in Mb . ${ }^{3}$ Distance (in Mb) from closest SNP used in multiplex. The symbol '-' means that no other SNP is allocated in the chromosome. ${ }^{4}$ GenBank accession n for SNP in Alectoris. ${ }^{5}$ Polymorphism in Alectoris sequence. ${ }^{6}$ Reproducibility percentage in duplicate PCRs for each sample.
mainly caused by A. chukar, 23 nuclear SNPs and one mitochondrial polymorphism (inferred by sequencing of D-loop region), resolved in two capillary runs of two PCR multiplex previously hybridized by primer extension (Sokolov 1989) were selected as the most powerful battery to detect introgression only by accounting for the presence of chukar alleles. Reproducibility was tested by performing PCR in duplicate for all samples. Those SNPs not showing at least 94% reproducibility were discarded, due either to a low primer affinity with the target sequence, or to the existence of some interaction adversely affecting PE primer binding.

Allele frequencies were calculated (Table 2) to perform analytical Type-I error probability and power calculations. The power of hybrid detection was calculated for a given significance level of $\alpha=0.1$ and several degrees of backcrossing. First, the whole 23 nuclear marker battery was tested. Then five markers (ALDOB, CLU, GMCSF, MNK, and OTC) were excluded on the basis of their highly intermediate frequencies. Power analysis was performed again with the reduced battery of 18 markers, and finally an optimum subset of markers was chosen to maximize power by checking all the possible subsets of any size. This check discarded three of the 18 (ARSA, OXT, and PKM2, all of them showing reasonably extreme frequencies for the chukar allele, but not so extreme for the A. rufa allele), and thus the final set of 15 markers with maximum B3 (an F1 A. rufa $\times A$. chukar backcrossed three consecutive times with A. rufa) detection power was established. This marker subset shows a detection power of $1 ; 0.99567 ; 0.84296$, and 0.52355 for an F1 A. rufa \times A. chukar, and three consecutive backcrosses with A. rufa B1, B2, and B3, respectively, with an associated Type-I error probability of 0.0984 . No further backcross levels were checked because of the very low percentage of A. chukar present (3% in a B4 backcrossing, for example).

Evidence from isolated populations suggested that linkage disequilibrium extends to a few hundred kilobases (Collins et al. 2001). In our study, the shortest distance in G. gallus between two multiplexed SNPs (GMCSF vs. PCBD2) was 1.1 Mb , while the rest of the pair-wise distances among SNPs were $>8 \mathrm{Mb}$ (see Table 2). Consequently, the assumption of independence was reasonable with regard to physical linkage.

Although arrayed PE assays (Deshpande et al. 2005; Pullat \& Metspalu 2008) are being developed with more recent state-of the art technology, the economic value of a partridge does not justify the application of expensive procedures. Our aim was to obtain a low-cost system that allowed analysis of a large number of individuals in a short time (Sanchez et al. 2003; Dixon et al. 2005). Primer extension is a simple, flexible and low-cost technique for fast geno-
typing of few SNPs in a few hundred individuals at a reasonable price with no need for an expensive infrastructure.

In conclusion, we show here that a domestic species, like G. gallus, can be used effectively to develop SNPs in a divergent genus, such as Alectoris. Moreover, the number of newly identified polymorphisms in the Alectoris genome and the simple and efficient SNP typing assay developed in the present study, compared with STRs and RAPDs, can be applied to the genetic control of reproduc-tive-bred individuals in hunting areas and on farms before restocking, thus limiting any harm to wild populations.

Acknowledgements

This work was funded by CDTI through a collaborative project with Agrocinegética Perdices Altube SA. NS is recipient of an FPU (Education Ministry) fellowship.

References

Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targetedgene approach. Molecular Ecology, 13, 1423-1431.
Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. TRENDS in Ecology \& Evolution, 11, 613-622.
Baratti M, Ammammati M, Magnelli C, Dessi-Fulgheri F (2004) Introgression of chukar genes into reintroduced red-legged partridge (Alectoris rufa) population in central Italy. Animal Genetics, 36, 29-35.
Barbanera F, Negro JJ, Di Giuseppe G, Bertoncini F, Cappelli F, Dini F (2005) Analysis of the genetic structure of red-legged partridge (Alectoris rufa, Galliformes) populations by means of mitochondrial DNA and RAPD markers: a study from central Italy. Biological Conservation, 122, 275-287.
Barbanera F, Guerrini M, Hadjigerou P et al. (2007) Genetic insight into Mediterranean chukar (Alectoris chukar, Galliformes) populations inferred from mitochondrial DNA and RAPD markers. Genetica, Springer Netherlands, 3, 287-298.
Barbanera F, Guerrini M, Khan AA et al. (2009) Human-mediated introgression of exotic chukar (Alectoris chukar, Galliformes) genes from East Asia into native Mediterranean partridges. Biological Invasions, Springer Netherlands, 11, 333-348.
Barilani M, Sfougaris A, Giannakopoulos A, Mucci N, Tabarroni C, Randi E (2006) Detecting introgressive hybridization in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conservation Genetics, 8, 343-354.
Barilani M, Bernard-Laurent A, Mucci N et al. (2007) Hybridization with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biological conservation, 137, 57-69.
Barroso A, Dunner S, Cañón J (1998) Technical note: detection of bovine kappa-casein variants A, B, C, and E means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Journal of Animal Science, 76, 1535-1538.

Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80-83.
Bernard-Laurent A (1984) Hybridation naturelle entre Perdix bartavelle (Alectoris graeca saxatilis) et Perdix rouge (Alectoris rufa rufa) dans les Alpes Maritimes. Gibier Faune Sauvage, 2, 79-96.
Collins A, Ennis S, Taillon-Miller P, Kwok P-Y, Morton NE (2001) Allelic association with SNPs: metrics, populations, and the linkage disequilibrium map. Human Mutation, 17, 255262.

Cortés O, Cañón J, Dunner S (2001) Utilización de pools de ADN y RAPD para identificar diferencias genéticas entre la perdiz roja (Alectoris rufa) y perdiz griega (Alectoris graeca). III Congreso de la Sociedad Española de Genética (Sevilla), Sept 2001, 89. ISBN-84-8474-031-5.
Deshpande A, Valdez Y, Nolan JP (2005) Multiplexed SNP genotyping using primer single-base extension (SBE) and microsphere arrays. Current Protocols in Cytometry, 13. Unit 13.4.
Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. Journal of Molecular Biology, 4, 599-634.
Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P (2005) Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Science International, 154, 62-77.
Dragoev V (1974) On the population of the rock partridge (Alectoris graeca Meisner) in Bulgaria and methods of census. Acta Ornithologica, 14, 251-255.
González P (2004) Un caso de cambio en el manejo de los recursos cinegéticos: la historia de la cría en cautividad de la perdiz roja en España. Revista Española de Estudios Agrosociales y Pesqueros, 204, 179-203.
González EG, Castilla AM, Zardoya R (2005) Novel polymorphic microsatellites for the red-legged partridge (Alectoris rufa) and cross-species amplification in Alectoris graeca. Molecular Ecology Notes, 5, 449-451.
Johnsgard AP (1988) The Quails, Partridges and Francolins of the World. Oxford University Press, Oxford, UK, pp. 111-121.
Negro JJ, Torres MJ, Godoy JA (2001) RAPD analysis for detection and eradication of hybrid partridges (Alectoris rufa $\times A$. graeca) in Spain. Biological Conservation, 98, 19-24.

Pullat J, Metspalu A (2008) Arrayed primer extension reaction for genotyping on oligonucleotide microarray. Methods in Molecular Biology, 444, 161-167.
Randi E, Tabarroni C, Rimondi S, Lucchini V, Sfougaris A (2003) Phylogeography of the rock partridge (Alectoris graeca). Molecular Ecology, 12, 2201-2214.
Sanchez JJ, Børsting C, Hallenberg C, Buchard A, Hernández A, Morling N (2003) Multiplex PCR and minisequencing of SNPs - a model with 35 Y chromosome SNPs. Forensic Science International, 137, 74-84.
Sanchez JJ, Phillips C, Børsting C et al. (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis, 27, 1713-1724.
Sokolov BP (1989) Primer extension technique for the detection of single nucleotide in genomic DNA. Nucleic Acids Research, 12, 3671 .
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.
Vargas JM, Guerrero JC, Farfán MA, Barbosa AM (2006) Land use and environmental factors affecting red-legged partridge (Alectoris rufa) hunting yields in southern Spain. European Journal of Wildlife Research, 52, 188-195.

Supporting Information

Additional supporting information may be found in the online version of this article.

Table S1 Unsuccessful genes tested for polymorphism detection in Alectoris genus based on Gallus gallus gene information

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

[^0]: Correspondence: S. Dunner, Fax: +3491 3943772; E-mail: dunner@ vet.ucm.es

[^1]: ${ }^{1}$ GenBank Accession numbers for Gallus_gallus-2.1 sequences used for primer design. ${ }^{2}$ Gallus_gallus-2.1 gene symbols used for primer design. ${ }^{3}$ Primer sequence based on Gallus_gal-lus-2.1 gene information. ${ }^{4}$ Sequence lengths according to Gallus_gallus-2.1 genome information. ${ }^{5}$ GenBank Accession numbers for A. rufa sequences obtained in this study. ${ }^{6}$ GenBank Accession numbers for A. chukar sequences obtained in this study. ${ }^{7}$ dbSNPs accession number for the polymorphisms obtained in this study. ${ }^{8}$ Primer sequence based on Alectoris sequences for multiplexing. ${ }^{9}$ Final primer concentration ($\mu \mathrm{m}$) in PCR multiplex systems. ${ }^{10}$ Multiplex that included each amplicon. ${ }^{11}$ dbSNP accession number of the interrogated polysequence based on Alectoris sequences. Detection orientations are indicated by F (forward) and R (reverse). ${ }^{15}$ Polymorphism interrogated in each Alectoris sequence. ${ }^{16}$ Final primer concentration ($\mu \mathrm{M}$) in primer extension reactions. ${ }^{17}$ Complete PE primer size including poly(dNTP) region, neutral sequence and target specific sequence.

