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Abstract

This article introduces a new perspective on Weitzman’s methodology for assessing the distribution of resources in genetic
diversity conservation programs. Intrapopulation information is added to the procedure by diffusion process formulas to
calculate genetic extinction probabilities, and therefore the marginal diversities and elasticities of diversity. The method was
tested with a set of European cattle breeds from Spain and France and provided satisfactory results.

The efficient distribution of economic resources in bio-
diversity conservation programs is difficult since many eco-
nomic, productive, morphological, genetic, social, and even
affective and aesthetic factors are involved in decision mak-
ing. In recent years, the preservation of biological diversity
has been a headline topic of discussion [see Amos and
Balmford (2001) for a short review). In particular, the con-
servation of genetic diversity in livestock has received a
great deal of attention (Barker 1999; Eding and Meuwissen
2001; Oldenbroek 1999; Ruane 2000). When developing
a program for the conservation of genetic resources, special
attention must be paid to how genetic diversity is measured,
as it is well known that the rate of evolution in natural
populations is limited by the degree of genetic variability
(Fisher 1930). For small and endangered populations, it
is important to avoid homozygosity as much as possible,
because any increase leads to less genetic variation, and
molecular estimates of inbreeding would suffer a parallel
increase. This determines not only survival, but also adap-
tation to changing environments, including changes in
consumer preferences and demands for animal-derived
products (Frankham 1995; Hedrick and Kalinowski 2000;
Lacy 1997). Considerable effort has been expended to
minimize the long-term rate of inbreeding (Sonesson and
Meuwissen 2001; Wang 1997; Wang and Hill 2000). Another
point of particular interest is how to make decisions for
investment policies to be applied to the different breeds
or populations to maximize benefits in terms of diversity
conservation.

Weitzman (1992) proposed a set of properties to be ver-
ified for the proper measurement of genetic diversity (see
also Eding and Meuwissen 2001; Thaon d’Arnoldi et al.
1998). These properties make sense both intuitively and al-
gebraically, but none of the usual measures of diversity verify
them (Weitzman 1992). However, Weitzman developed a di-
versity function in which they all hold. This is ultimately
based on pairwise distances between operational taxonom-
ical units (OTUs), and it is easily implementable through a re-
cursive algorithm. Since this is indirectly of the clustering
type, it provides a graphic representation that has (in the
strict sense) erroneously been called a ‘‘maximum-likelihood
evolutionary tree.’’ However, it supplies much useful infor-
mation. Examples of its use can be found in Cañón et al.
(2001), Laval et al. (2000), and Thaon d’Arnoldi et al. (1998).
With this procedure, the contribution of each OTU, or
groups of OTUs, to total diversity can easily be calculated,
allowing conclusions on conservation policies to be drawn.
However, as with any other methodology, there are some
drawbacks (Caballero and Toro 2002; Eding and Meuwissen
2001). The most frequently mentioned is that it ignores
within-population information, and being that assertion is
not entirely true, since the method can be applied at any
level—species, breed, population, and even individual—and
therefore a within-population diversity can be computed,
the fact is that the algorithm is a between-units one. A
way of incorporating within-population information into
the algorithm itself, involving computing Weitzman diver-
sity within each population under study, is currently under
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development. It is also commonly argued that it does not
take into account different population sizes. The present
work has filled these gaps by studying the development of
gene frequencies within populations in order to compute
extinction probabilities.

Weitzman’s Approach

Weitzman (1993) devised a natural way of studying the evo-
lution of diversity over different generations and of weighing
the contributions of each OTU more precisely in order to as-
sess the distribution of resources for conservation of genetic
diversity programs. Basically it consists of calculating the
expected value of a certain diversity measure—the method
does not depend on which is chosen—by assigning probabil-
ities to all the possible values of diversity at a particular time.
Obviously there are as many values as subsets of the whole set
of OTUs, since at a particular time (t) some OTUs may have
become extinct and only the remainders count toward the fi-
nal diversity. These values of probability depend on the prob-
abilities of extinction of each particular OTU. Values are then
obtained that measure how much the expected diversity at
time t is affected by changes in each probability of extinction.
Therefore a very logical and coherent, but conceptually simple
way of weighing the OTUs with respect to their influence on
expected diversity is constructed. This method has already
been applied by Reist-Marti et al. (2003), but they do not es-
cape the fact, already noted in Weitzman (1993), that the
choice of these extinction probabilities is strongly subjective,
and that is an important drawback of this approach. To cir-
cumvent this problem, the present investigation substitutes
the concept of extinction with that of genetic extinction, in
such a way that these probabilities can be calculated for
any generation by using allelic frequencies and the theory of
diffusion processes. In addition, this allows within-population
diversity information to be brought into the analysis. The
original procedure lacked this feature.

This method is a powerful tool for performing combined
analyses integrating between- and within-population informa-
tion. The former comes from pairwise distances, which can be
genetic, and are studied by Weitzman’s diversity measure. The
latter come from allelic frequencies, and are studied in a sec-
ond step using Weitzman’s marginal diversity and elasticity of
diversity (Weitzman 1993). These concepts are first intro-
duced and later the theory of diffusion processes is applied
to show how it accommodates Weitzman’s model. Finally,
an example of its use with a dataset from eight European
cattle breeds is shown. All calculations were made using a
FORTRAN program that implements the computation of
Weitzman’s diversity, including all the links, representatives,
and percentages of diversity contributed by each OTU and
each node of the tree. It also provides the ‘‘as if’’ ultra metric
distance matrix, which, when used as an input in any tree-
generating software, gives the unique hierarchical tree result-
ing from Weitzman’s algorithm. Finally, for a given generation,
the probabilities of genetic extinction, the marginal diversity,
and the elasticity of the diversity of each OTU are derived.

Expected Diversity, Marginal Diversity,
and Elasticity of Diversity

When establishing a policy of conservation of genetic re-
sources, it is important not only to be able to evaluate cur-
rent diversity, but to broaden the time horizon and infer the
behavior of that diversity a number of generations ahead,
and to determine which breeds or species are more influen-
tial upon it.

Assuming a trustworthy measure of diversity already
exists—whether it is Weitzman’s or another—it is of interest
to know how the diversity of a set of populations will change,
and which of them are more important for the conservation
of genetic diversity in the context of biodiversity manage-
ment programs. It is with this in mind that the concepts
of expected diversity, marginal diversity, and elasticity of
diversity are proposed.

Let Q be a set of NP OTUs. Let also D : §(Q) / jR be
a certain diversity function, and fPigi51, . . . , NP

be the prob-
abilities of extinction in one generation for each of them.
The theoretical development of the procedure that will be
described does not depend on D. It is applicable to any di-
versity function, as long as for any subset S4 Q, the value of
D(S ) exists and is well defined. To exemplify the use of this
methodology, the Weitzman diversity measure has been cho-
sen. Its explicit definition will not be given here, since it can
already be found and discussed in Weitzman (1992) and
Thaon d’Arnoldi et al. (1998). If, for each subset of OTUs,
S 2 Q, the probability Pt(S ) of the OTUs in S having survived
after t generations and those in Q\S having become extinct
can be found, then D at time t, Dt, can be thought of as a ran-
dom variable whose expected value can easily be calculated.
The expected diversity after t generations can therefore be
defined as

EDt 5
X

S2§ðQÞ
PtðSÞDtðS Þ: ð1Þ

This is not exactly the expression provided by Weitzman,
since he defines the expected diversity as the cumulative sum
of generations 1 to t, weighted by a ‘‘discount factor.’’ The
discount factor has been ignored here because, as shown be-
low, the expected diversity is to be partially differentiated
with respect to the probabilities of extinction. Therefore
the discount factor provides no information for comparative
purposes, and no advantage is to be found in accumulating
the sum—besides, equation 1 is more coherent with the sta-
tistical concept of expected value.

Another important point that arises from the choice of
Weitzman’s diversity as the one to operate with is its very
nature as a measure that uses pairwise distances as the in-
put to calculate its value. If these distances do not vary
with time, then Dt(S ) 5 D(S ), the diversity at the present
time. But Dt(S ) might be different from D(S ) if there is
variation in the distances with time, as happens with most
genetic distances. It is important therefore to assess the
choice of the distance used to calculate the diversity, so
that the effect of the chosen evolutionary model can be
taken into account.
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To calculate equation 1, it is assumed (Weitzman 1993)
that the ‘‘lifetime’’ of population i follows an exponential dis-
tribution with parameter Pi. Thus Pt(S ) is given by

PtðSÞ5
Y
i2S

expð�Pi tÞ
Y
i2QnS

ð1 � expð�Pi tÞÞ: ð2Þ

Observe that EDt is a function of (Pi, . . . , PNP), and there-
fore can be partially differentiated with respect to each Pi. As
a result, the marginal diversity for population i, i5 1, . . . , NP,
in generation t, is defined as

MDtðiÞ5 � @EDt

@Pi
ðPiÞ: ð3Þ

With respect to the meaning of these expressions, the sit-
uation is as follows: a set of species, populations, or OTUs in
general are under consideration; a measure of diversity has
already been established for them; and the importance of
each to conservation purposes can now be discussed. The
future needs to be examined to see how that diversity might
behave and how modifications to each population might af-
fect that expected behavior. One of two things can happen to
every single population: it may survive or it may become ex-
tinct. Therefore the diversity value at any future point in time
will be that of the set of populations that have survived.
Given the one-generation probabilities of extinction
fPigi51, . . . , NP

, the probability of survival at time t of any pos-
sible subset of the original can easily be calculated, as already
shown (equation 2). Now, for a set Q of NP populations,
there are 2NP possible subsets of Q, that is, there are 2NP pos-
sible patterns of survival/extinction, and hence 2NP different
values of diversity. Each of these values can be calculated
along with its corresponding probability, so it makes sense
to consider diversity at time t as a random variable and obtain
its expected value. This is precisely the expected diversity.

As just shown, this expected diversity is ultimately a func-
tion of fPigi51, . . . , NP, so studies can be made of how var-
iations in these probabilities affect the expected value of
diversity. The more the diversity is affected by changes in
a population’s probability of extinction, the more that pop-
ulation should be considered a priority for action. But the
concept of variation in this case is just that of a derivative,
or more precisely, that of a partial derivative, with respect to
each population’s probability of extinction. Note that the
value of these derivatives must be negative, since the more
a population is likely to become extinct, the lower the
expected diversity value will be. The marginal diversity is
therefore defined as the negative of the value of the partial
derivative to handle positive numbers.

Since a reduction in the probability of extinction pro-
vokes an increase in the expected diversity, and this increase
is greater for higher marginal diversity values, it is on those
populations with the highest values that attention should be
focused. This must be directed toward lowering their extinc-
tion probability.

Another interesting indicator is the elasticity of diversity
or the conservation potential of the population i, i5 1, . . . ,NP,
in generation t. Elasticity is a very popular and well-known
concept in economy. In most cases it compares the relative

variation in the quantity of demand with respect to the rel-
ative variation in prices, thereby obtaining a measure of the
responsiveness, or sensitivity, of the demand to changes in
price. If, for example, the price of a particular good
increases by 2% and the demand for that good decreases
by 5%, then the elasticity of the demand is �2.5. Usually
the elasticity of demand is negative, since an increase in
prices has, as a consequence, a decrease in the quantity of
demand. If the elasticity is less than �1, then the demand is
said to be elastic with respect to prices, while if it is between
�1 and 0, the demand is called inelastic. If the elasticity
equals zero, the demand is completely inelastic, which means
that the seller can raise the price of the product as much as
he wants and the demand will not decrease at all. The
other extreme is a perfectly elastic demand. In this situation,
elasticity approaches �N, and the seller can sell virtually as
much as he wants at the current market price. Raising the
price would imply that demand would nearly disappear,
and lowering it would be unprofitable, since demand is prac-
tically unlimited at the current price. Most real-life situations
are, however, in the middle of these extremes, and sellers
have to have adequate prices in order to optimize benefits.

The general formula for the price elasticity of demand is
E 5 ((DQD/QD)/(DP/P)), where P is the current price of a
certain good, QD is the quantity demanded at that price, DP
is a small change in the current price, and DQD a small change
in the quantity demanded. Note that this expression can be
rearranged as E 5 (DQD/DP)(P/QD). When the changes
are not measured in a short time period, averages of the initial
and final values are taken on QD and P. To approximate the
elasticity at a particular point, short intervals can be taken
around quantity and price values at that point to calculate dif-
ferences. However, when differentiation is possible, exact
computation is available, as will be shown in equation 4.

The concept of elasticity can be applied to many other
economic variables, such as supply instead of demand, or
in noneconomic contexts, as happens in this case. An analogy
can be established here between quantity of demand and
expected diversity value and between price and extinction
probability, so the elasticity of diversity or conservation po-
tential, as renamed in Weitzman (1993), can be defined as

CPtðiÞ5 � @EDt

@Pi
ðPiÞ

Pi

EDt

; ð4Þ

where, as before, the minus sign is added to deal with positive
numbers.

Elasticity is particularly relevant when the cost of reducing
the probability of extinction of a population is directly pro-
portional to the probability itself [see Weitzman (1993) for fur-
ther discussion on the singularities of equations 3 and 4].

Genetic Extinction

All the previous definitions are based on one-period proba-
bilities of extinction of each population—which ought to be
known. However, this is not as easy as it sounds. There is no
objective way of determining this for a common species,
population, or breed. Therefore the information obtained
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depends on the subjectiveness of the probability values,
which is not very desirable. Scientific, rigorous, and objective
probabilities are required if the above methodology is to be
correctly applied. Instead of the concept of physical extinc-
tion, it is proposed here that genetic extinction be used. The
concept is even more appropriate if it is taken into account
that it is genetic diversity that is being referred to in a frame-
work of genetic resources conservation programs. In addi-
tion, this introduces within-breed information from allelic
frequencies into the analysis.

The concept of genetic extinction is closely related to that
of homozygosity, since the genetic extinction of a population
is equivalent to a homozygosity rate of one. The more ho-
mozygous a population is, the more genetically endangered.
But homozygosity is, in practice, nothing more than an av-
erage of a number of homozygous individuals taken across
a series of representative loci. Therefore, by analogy, an av-
erage can be calculated for the allelic situation of the loci un-
der study for each breed. There are two alternatives. One is to
average the probability of fixation of the loci at time t and use
that to calculate the marginal diversity and conservation po-
tential. The other is to perform the analysis on each locus
with its corresponding fixation probability, obtain a different
value of marginal diversity and conservation potential for
each, and average those values across the loci. The extinction
probabilities can be loosely extended to the point in which
allelic frequencies exceed a certain value a instead of just
equaling one.

For ease of notation, index i will be dropped in the fol-
lowing formulas, which is referred to a generic population,
but all the calculations will be ulteriorly applied to each of
the NP populations to obtain the corresponding extinction
probabilities.

Consider a set of L loci, and for locus l, let fAl
1; . . . ;

Al
nt
g be the alleles, l 5 1, . . . , L. For each m 5 1, . . . ,

nl and l 5 1, . . . , L, let plmðtÞ be the frequency of the allele
Al

m in generation t in a certain population. For the first op-
tion, Pext(t) is therefore calculated as

PextðtÞ5
1

L

XL
l51

P
[nl
m51

plmðtÞ � a
� �" #

5
1

L

XL
l51

Xnl
m51

P plmðtÞ � a
� �

; ð5Þ

the second equality holding because the events are disjointed
(if one allele becomes fixed or has a frequency higher than a,
for a. 0.5, no other allele can do the same). For the second
option, a set of L probabilities fPext(t,l )gl51, . . . , L can be
calculated:

Pextðt ; l Þ5 P
[nl
m51

plmðtÞ � a
� �" #

5
Xnl
m51

P plmðtÞ � a
� �

; l 5 1;. . .;L: ð6Þ

The change in gene frequencies over the generations is
an intricate process that depends on very different factors.

However, diffusion processes allow explicit expressions for
P ½plmðtÞ � a� in many cases. To illustrate the approach intro-
duced in this article, the particular situation of populations
solely under the effect of genetic drift will be explained.
In this case, it can be proven that

Pext ðtÞ5
1

L

XL
l51

Xnl
m51

plmð0Þ þ
XN
i51

ð2i þ 1Þplmð0Þ
"

� ð1 � plmð0ÞÞF ði þ 2; 1 � i; 2; plmð0ÞÞ
� Fð�i;i þ 1;1; aÞ � Fð�i;i þ 1;1;1Þ½

þ ð�1Þi
�
e
�iðiþ1Þt

4N

#
ð7Þ

and

Pext ðt ; l Þf gl51;...;L

5
Xnl
m51

plmð0Þ þ
XN
i51

ð2i þ 1Þplmð0Þ
"(

� ð1 � plmð0ÞÞF ði þ 2; 1 � i; 2; plmð0ÞÞ
� Fð�i;i þ 1;1; aÞ � Fð�i;i þ 1;1;1Þ½ :

þð�1Þi
�
e
�iðiþ1Þt

4N

#)
l 5 1;...;L

; ð8Þ

where plmð0Þ
� �l51;...;L

m51;...;nl
are the present-time allelic frequen-

cies of loci 1 to L, and F(�,�,�,�) is the hypergeometric
function.

Equations 7 and 8 are calculated for a single population and
require the allelic frequencies of all the marker loci involved in
the study. For a whole set of populations, a set of probabilities
exists, Pi

extðtÞ
� �

i5 1;...;NP
(or Pi

extðt ; l Þ
� �l51;...;L

i51;...;NP
), each of

them calculated according to equation 7 or 8. Observe that
these probabilities are not conceptually the same as those in
fPigi51;...;NP

, since the latter are one-generation extinction
probabilities, while the former are the direct probabilities
of extinction at generation t.

Equations 7 and 8 allow that which is desired: to have at
our disposal a series of objective probability values based
on genetic data. Furthermore, with this approach, within-
population information as well as information on population
sizes is introduced into the analysis.

For ease of notation, only the first case, that of averaged
probability values across loci will be analyzed, so probabili-
ties, Pi

ext ðtÞ
� �

i51;...;NP
, obtained for each population accord-

ing to equation 7, will be used. Thus, for a subset S of the
whole set of populations Q, equation 2 is substituted by

PtðSÞ5
Y
i2S

1 � Pi
extðtÞ

� � Y
i2QnS

Pi
ext ðtÞ ð9Þ

in equation 1 to calculate the expected diversity. The defini-
tions of marginal diversity and elasticity would be analogously
modified, so the differentials would be made with respect to
Pi
extðtÞ instead of Pi.

Note that with this model, EDt is a linear function of
each Pi

ext ðtÞ separately. This is, if for a given i, we consider
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Pi
ext ðtÞ as variable and the rest, P

j
ext ðtÞ; i 6¼ j 2 f1, . . . , NPg as

fixed, then

EDtðiÞ
5

X
S2§ðQÞ

DðSÞPtðS Þ

5
X

S2§ðQÞ
DðSÞ

Y
j2S

1 � P
j
ext ðtÞ

� � Y
j2QnS

P
j
ext ðtÞ

5

X
S2§ðQÞ

DðSÞ 1 � Pi
ext ðtÞ

� �Y
j2S
j 6¼i

1 � P
j
ext ðtÞ

� �

�
Y
j2QnS
j 6¼i

P
j
ext ðtÞ; if i 2 S

X
S2§ðQÞ

DðSÞPi
ext ðtÞ

Y
j2S
j 6¼i

1�P
j
ext ðtÞ

� �Y
j2QnS
j 6¼i

P
j
extðtÞ;

if i;S

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ
Therefore MDt(i ), being the partial differential of EDt with
respect to Pi

extðtÞ; is a constant value for each i 5 1, . . . , N.
In fact,

MDtðiÞ

5

X
S2§ðQÞ

@
@Pi

ext ðtÞ
DðS Þ 1�Pi

ext ðtÞ
� �Y

j2S
j 6¼i

1�P
j
ext ðtÞ

� �

�
Y
j2QnS
j 6¼i

P
j
ext ðtÞ; if i2S

X
S2§ðQÞ

@
@Pi

ext ðtÞ
DðS ÞPi

extðtÞ
Y
j2S
j 6¼i

1 � P
j
ext ðtÞ

� �

�
Y
j2QnS
j 6¼i

P
j
ext ðtÞ; if i;S

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

5

X
S2§ðQÞ

�DðS Þ
Y
j2S
j 6¼i

1 � P
j
ext ðtÞ

� �Y
j2QnS
j 6¼i

P
j
ext ðtÞ; if i 2 S

X
S2§ðQÞ

DðS Þ
Y
j2S
j 6¼i

1 � P
j
extðtÞ

� �Y
j2QnS
j 6¼i

P
j
ext ðtÞ; if i;S

8>>>><
>>>>:

ð11Þ
so therefore

MDtðiÞ5 �
X

S2§ðQÞ
DðS ÞP*

t ðSniÞð�1ÞIS ðiÞ ; ð12Þ

where IS(i ) equals one when i 2 S and zero when i ; S, and
P*
t is defined over §(Q\i ) in the same way that Pt is over

§(Q), and consequently MDt(i ) does not actually depend on
Pi
ext ðtÞ: Had one-period extinction probabilities been

employed, such as in Weitzman (1993), there would be a non-
linear dependence of EDt on each Pi

ext ðtÞ; and MDt(i ) would
indeed depend on Pi

extðtÞ: Now, from equation 12, MDtðiÞ5P
S2§ðQÞ

i2S
DðS ÞP*

t ðSniÞ �
P

S2§ðQÞ
i;S

DðSÞP*
t ðS Þ; and, finally,

equation 12 can be rewritten as

MDtðiÞ5 �
X

S2§ðQniÞ
P*
t ðS Þ½DðS [ iÞ �DðSÞ�: ð13Þ

The expression in brackets recalls strongly the partial con-
tribution of population i, calculated for every i 5 1, . . . , NP

as PCi 5 [D(Q) � D(Q\i )]/D(Q). In fact, if a random vari-
able Ci: §(Q\i ) / jR is defined such that for every S4Q\i,
Ci(S ) :5 D(S [ i ) � D(S ) with probability P*

t ðS Þ; then the
marginal diversity is the expected value of Ci at generation t,
and, divided by the expected diversity at generation t,
can be understood as an expected partial contribution at
generation t.

Application and Results

This procedure was tested with an example set of local
French and Spanish cattle breeds from the European con-
tract FAIR1 CT95 0702 project [see Cañón et al. (2001)
for details]. Table 1 shows the names, origins, and effective
sizes of the breeds.

Allelic frequencies from 16 microsatellite-type marker
loci, obtained from a total of 50 animals per breed (Cañón
et al. 2001), were used to calculate marginal diversities and
elasticities. Goldstein et al. (1995) proposed a distance mea-
sure, the average squared distance, especially devised for
markers with a high degree of polymorphism, such as micro-
satellites. Some of its properties include the fact that its
expected value does not change over time under a genetic
drift model, which allows for Dt(S ) 5 D(S ). Although it
is not a distance in the strict sense, since when measured from
one population to itself it does not equal zero, the procedure
can be applied without loss of generality. Thus this distance
was applied to calculate the Weitzman diversity, and partial
contributions of the breeds to the total current diversity,
fPCigi51, . . . , NP, were obtained. Note that this distance is
used just as an example, since the method presented here
can be implemented with any distance, as long as its variation
with time can be assessed effectively enough. Actually the
distance measure does not necessarily have to be a genetic
distance. It may involve morphological or other kinds of in-
formation, and it is up to the person in charge of putting the
method into practice to decide which particular distance suits
the situation under study.

Table 2 shows the partial contributions and the marginal
diversities and conservation potentials obtained for 25, 35,
and 50 generations, and an a threshold of 0.90. Values were
rescaled to 100. Other within-population variation statistics

Table 1. Breeds, countries of origin, and effective sizes

Breed Country Effective size

Alistana (ALI) Spain 36
Asturiana de Montaña (ASM) Spain 35
Asturiana de Valles (ASV) Spain 89
Aubrac (AUB) France 100
Gasconne (GAS) France 100
Salers (SAL) France 100
Sayaguesa (SAY) Spain 21
Tudanca (TUD) Spain 35
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are included, such as mean observed and expected homozy-
gosity and mean effective number of alleles. The results from
the two methods described above—average extinction prob-
abilities and average marginal diversities and conservation
potentials—are extremely similar (data not shown). Suffice
it to say, the mean coefficient of variation of the marginal
diversities and the conservation potentials were 0.004%
and 0.09%, respectively. Therefore, for the sake of simplicity,
only values for the first method (average extinction pro-
bability across loci) are shown. Table 2 also shows that
the differences in the figures among the breeds for other tra-
ditional within-variation measures are too small to make clear
distinctions.

According to the partial contributions, Gasconne and
Salers are the two most contributing breeds, followed by
Aubrac, and, by far, by the Sayaguesa breed. Alistana and
Asturiana de Valles are the breeds with the lowest partial
contributions.

Marginal diversities are almost identical to partial contri-
butions. The ultimate reason is the very nature of the mar-
ginal diversity. As seen in equation 13, marginal diversity is
a sort of expected partial contribution at the given generation.
Now, in the weighted sum, the set Q\i2§(Q\i ) has a higher
weight, since the probability of survival of all the populations
in Q\i is noticeably higher than the probability of any other
combination of survival/extinction within the set of popu-
lations Q\i. This happens especially in short to medium time
intervals, because the fewer the number of generations, the
lower the fixation probability for any allele and therefore the
lower the extinction probability, making the product of the
probabilities used to calculate each term of equation 13—
except for Q\i—much smaller. This fact may lead one to
consider marginal diversity as a superfluous indicator once
we already have partial contributions, but it may be seen
so only in the short term, because as generations pass, the
differences between partial contributions and marginal diver-
sities increase. This increase is already suggested in Table 2,
although it would be much more evident for a larger number
of generations.

Conservation potentials offer a different prioritization
scheme than marginal diversities. Because of its low effective
size, Sayaguesa is now the highest scored breed, followed by
Salers, due to its strong influence in the between-population
variation. Salers and Aubrac, highly prioritized with the mar-

ginal diversity criterion, are also important with respect to the
conservation potential. Excluding Sayaguesa, Salers and
Aubrac would join Alistana, Asturiana de Montaña, and
Tudanca in a middle group. Differences within this group
tend to diminish notably as the time horizon increases.
The figures for Gasconne are particularly noteworthy. Mar-
ginal diversity sets this breed as the first in the prioritization
ranking, while its conservation potentials are remarkably
low—only Asturiana de Valles shows lower values. This
may possibly be due to the fact that Gasconne is uniformly
the most distant breed, that is, for any certain breed, Gas-
conne has a higher pairwise distance with this breed than
any other one (data not shown), so it scores high in partial
contribution and marginal diversity, where between-breed in-
formation seems to have a greater weight. On the other hand,
it has the lowest extinction probability of all the breeds (down
to six times that of Salers and Aubrac; all three having the
same effective size), and this pulls down its ranking in the
conservation potential. Only Asturiana de Valles is below
Gasconne. This might be due to the combination of having
a relatively low extinction probability and being, as opposed
to Gasconne, uniformly the closest breed, meaning that for
any certain breed, Asturiana de Valles has a lower pairwise
distance with this breed than any other one (data not shown).
So, on one side, within-breed information says that its extinc-
tion probability is low, while on the other, between-breed in-
formation says that it is quite close to the rest of the breeds.
Therefore it has the lowest conservation potential value.

Discussion

Maintaining genetic variability is an important goal in the
conservation of animal populations and Weitzman’s proce-
dure can be applied to achieve this. However, it has been
criticized (Caballero and Toro 2002; Eding and Meuwissen
2001; Thaon d’Arnoldi et al. 1998) for not considering
within-population variation. Only Ollivier and Foulley (2002)
suggest the otherwise obvious, but always ignored, possibility
of applying Weitzman’s algorithm to obtain a within-diversity
measure. To do this, the coefficient of molecular coancestry
(Fabuel et al. 2004) between individuals, which applies
Malécot’s (1948) definition, but uses the concept of identity

Table 2. Mean expected (MEH) and observed (MOH) homozygosities, mean effective number of alleles (MENA), partial contributions
(PC), and average probabilities of extinction ðPi

ext ðtÞÞ; marginal diversities (MDi(t)), and conservation potentials (CPi(t)) from averaged
probabilities for t 5 25, 35, and 50, using the average squared distance

Breed MEH MOH MENA Pext
i (25) Pext

i (35) Pext
i (50) PC MDi(25) MDi(35) MDi(50) CPi(25) CPi(35) CPi(50)

SAL 0.369 0.420 4.35 0.030 0.050 0.084 23.778 23.830 23.846 23.817 15.038 14.182 14.100
AUB 0.389 0.431 4.68 0.029 0.054 0.093 19.009 19.054 19.088 19.123 11.723 12.208 12.532
GAS 0.292 0.370 3.89 0.005 0.014 0.034 25.686 25.673 25.652 25.565 2.780 4.256 6.154
ALI 0.319 0.371 4.01 0.079 0.151 0.267 5.817 5.818 5.827 5.856 9.653 10.469 11.025
ASM 0.295 0.348 4.53 0.076 0.146 0.263 6.634 6.566 6.528 6.495 10.522 11.351 12.028
ASV 0.317 0.344 6.49 0.025 0.043 0.075 5.025 5.051 5.087 5.206 2.630 2.615 2.755
SAY 0.293 0.346 3.88 0.194 0.326 0.504 8.184 8.165 8.149 8.128 33.137 31.618 28.853
TUD 0.349 0.404 3.74 0.119 0.192 0.306 5.868 5.842 5.823 5.809 14.517 13.301 12.553
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in state instead of identity by descent, could be used to build
a matrix of genetic distances (actually 1 � Malécot’s coeffi-
cient) between individuals within one population to compute
the Weitzman diversity measure within each population.
However, this way of calculating within-breed diversity is ac-
tually highly correlated (r5�0.985 in the example presented
in this article; data not shown) with within-breed heterozy-
gosity. Other criteria have been proposed to estimate within-
breed variation, such as allelic richness (Marshall and Brown
1975). Efficiency of heterozygosity or allelic richness de-
pends on the interest in the short- or long-term selection
response.

If no extinction probabilities, be they genetic based or
not, and no future behavior of the diversity and each pop-
ulation’s contributions to it are to be studied, other solutions
to incorporate Weitzman’s approach to a joint between- and
within-population analysis have been suggested. Ollivier and
Foulley (2002) proposed a linear combination of between-
population diversity, calculated via the Weitzman approach,
and within-population diversity, measured with the heterozy-
gosis, as an aggregate diversity, similar in concept to the tra-
ditional aggregate genotype in animal breeding. Depending
on the emphasis given to the different possible breeding
objectives, for example, selection or crossbreeding, different
weights can be justified. It can be shown (Ollivier and Foulley
2004) that when the weights of between-breed and within-
breed contributions are proportional to FST (between-
population differentiation index) and (1 � FST), breeds rank
in a similar way when applying the method proposed by Petit
et al. (1998) and Caballero and Toro (2002).

It is well known that more than 80% of the total variabil-
ity in a domestic animal species is a consequence of the ge-
netic differences among individuals within subpopulations,
(e.g., breeds), so giving a relatively greater emphasis to this
within-breed component means promoting the possibility
of the selection response within breeds. However, the cross-
breeding, to exploit the heterosis or the complementarity, is
also an important genetic improvement strategy to be used in
animal production, and their magnitudes are proportional to
the genetic distances among breeds (Falconer and Mackay
1996:255). This should justify giving more emphasis to the
between-breed component, as illustrated by Chaiwong and
Kinghorn (1999).

Using extinction probabilities allows a different way of
using Weitzman’s methodology. Between- and within-genetic
information are both included in the analysis, and the behav-
ior of the diversity in future generations can be assessed. The
two alternate definitions of extinction probabilities are com-
putable without difficulty and the rationale behind them
agrees with that of popular measures like homozygosity.
The results from both procedures do not differ too much
and allow clear differentiations among the breeds, some-
thing not possible with more classical measures of within-
population variation, as can be deduced from Table 2. The
close relationship between the rate of inbreeding and the
probability of extinction defined here allows the application
of Weitzman’s methodology to classify populations by the
effect on expected diversity when efforts (Sonesson and

Meuwissen 2001; Wang 1997; Wang and Hill 2000) are made
to reduce their homozygosity increase per generation.

As discussed above, marginal diversities were similar to
partial contributions in all breeds, which supports the con-
cept of expected partial contributions. Nevertheless, there
are upward trends in some of the breeds and downward
trends in others, which reflects that although the most influ-
ential factor for the marginal diversity seems to be the weight
of the breed in terms of diversity, extinction probabilities
tend to force constant patterns of increase/decrease of
the marginals. This perhaps excessive influence of the phy-
logenetic scene on marginal diversities might be overcome by
introducing one-generation genetic extinction probabilities,
such as in Weitzman’s work (1993), and basing all the analysis
at any generation on them. However, this is beyond the scope
of this article.

Neither is it the aim of this article to decide or advise on
which of the many available distance measures should be
used to perform an analysis. On the contrary, the method-
ology presented here is introduced as a general procedure
in which a distance measure is required, but its choice is
not inherent to the procedure. However, the particulars of
each individual application should be taken into account
when choosing the distance to use, since different distances
can actually lead to quite different conclusions. For example,
since the effective size already has an important weight on the
extinction probability, the more a distance weight drifts, the
more the values for marginals and elasticities will correlate
with drift-based measures such as heterozygosity. Different
distances should be used depending on the kind of OTUs or
taxas used. Some distances are better suited for species com-
parisons and others for close breed analysis, depending on
the time since divergence and the drift-mutation model.
The same applies to the solution of the Kolmogorov (1931)
equation, used to obtain equations 7 and 8, which can be
found for a number of different scenarios.

The example shows that the results for the partial
contributions and marginal diversities in short- or medium-
term applications are extremely similar. Since no within-
population information is taken into account to obtain the
partial contributions, it seems that the marginal diversity is
not a very good indicator to account for both between- and
within-population information in short- or medium-term
applications. In the long term, the marginal diversity seems
to depart from the value of partial contribution, so it should
be interesting to consider it.

Regarding conservation potentials, figures show that ef-
fective size is an important factor, as proved by Sayaguesa’s
high values, but also that other important information is
accounted for in the model, so the final result is a combina-
tion of all the genetic properties of the populations.

Also, as noted by Weitzman (1993), elasticity, or conser-
vation potential, is the most trustworthy indicator when the
mechanism of investment is directly related to extinction
probability, since the marginal diversity is weighted by the
extinction probability itself. Ideally an optimal study should
include a functional relationship between costs and effects on
extinction probability, so the problem could be examined in
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terms of function optimization subject to a series of con-
straints. In the absence of this kind of information, a global
view of the results must be taken to arrive at balanced advice.
In addition, it must not be forgotten that many factors other
than genetics are usually and necessarily taken into account
when addressing the conservation of biological diversity, and
the information provided by genetic diversity studies must
not be considered the sole source of information for decision
making. Nevertheless, the methodology introduced here
gathers together different types of genetic data (between
breed, within breed, and population size) and is a useful tool
in diversity conservation assessment.

The kind of analysis presented is recommended when
mid- or long-term diversity studies are proposed, since genes,
on average, are not expected to suffer noticeable risk of fix-
ation in short time periods, unless effective sizes are partic-
ularly small, in which case a lesser number of generations can
be considered.

As a final consideration, the appendix details a new ap-
proximation of the Weitzman algorithm that allows for
a greater number of populations to be introduced in the anal-
ysis and improves existing approximations.

Appendix

The Weitzman algorithm (Weitzman 1992) is very computer
time demanding, and computation time grows exponentially
with the number of populations included in the analysis—
log regression of the experimental computing time versus
the number of populations provides an r2 of 0.998 (data
not shown). For example, with an AMD processor at 2.4
GHz, computing only the diversity of 33 populations, with-
out partial contributions or marginals, took almost 11 h, and
time increases by an estimated factor of 2.14 (data not
shown), so handling larger numbers of populations becomes
infeasible. Therefore some kind of approximation of the ex-
act algorithm must be used if the number of populations
becomes larger than a few dozen.

Thaon d’Arnoldi et al. (1998) proposed an approximation
consisting of randomly sampling trees among the 2n�1 that
the algorithm examines and taking as the approximated value
of diversity the maximum of the values coming out of the
sampled trees. This procedure works well with a relatively
small number of populations—they tested it up to 29—
but as the number of populations increases, so must the sam-
ple size. The problem is that while the exact algorithm can be
implemented recursively, the approximated one cannot, and
it comes to a point where, for reasonable precision in the
estimation, the approximated algorithm actually takes more
time than the exact one.

We propose a different approximation, and preliminary
results seem to indicate that its behavior is rather satisfactory.
In each step, the algorithm splits into two symmetrical recur-
sive problems, each of which deals with a submatrix one di-
mension smaller than the input one. What we propose is,
before inputing these submatrixes into the next step, check-
ing their dispersion, and if all the values in one submatrix are

close enough together around a mean value, to use this value,
multiplied by the remaining number of steps, as the diversity
value for that submatrix, and if not, then proceed with the
exact computation in the usual way. The way to check for
this ‘‘closeness’’ is to set a threshold to the variation coeffi-
cient (i.e., the standard deviation divided by the mean) of the
values in the matrix. If this coefficient is lower than the
threshold, then approximate, and if it is larger, then go on
with the exact algorithm—which might eventually be trun-
cated in some further step if the condition is met.

Figure 1 shows the bias we observed between the real and
the approximated values of the diversity through increasing
numbers of populations, from 13 to 33, and it can be seen
that the bias never goes beyond 3% in absolute value. Cal-
culations were made for a threshold on the variation coeffi-
cient of 0.25. Of course, the higher the threshold, the faster
the computation, but with a higher bias attached, and vice
versa. The behavior of the bias, as shown in Figure 1, is
so irregular because the approximation is quite dependent
on the data structure—the distance matrix in this case—
but apparently it seems to provide good results. For 33 pop-
ulations, the exact algorithm took, as mentioned above, al-
most 11 h to complete, while on the same computer the
approximation took 2 min 40 s, with a bias of 2.7%. For a dif-
ferent dataset, 35 populations took 2 days minus 5 min until
completion with the exact algorithm, and the approximation
took less than 2 s with a threshold of 0.4, biasing the result
less than 2%.

As promising as these results may seem, this procedure
should be tested exhaustively before being applied to large
datasets on the order of 50 or more populations, but that task
is beyond the scope of this article.
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