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Investigation on QTL-marker linkage usually requires a
great number of observed recombinations, inferred from
combined analysis of phenotypes and genotypes. To avoid
costly individual genotyping, inferences on QTL position and
effects can instead make use of marker allele frequencies.
DNA pooling of selected samples makes allele frequency
estimation feasible for studies involving large sample sizes.
Linkage studies in outbred populations have traditionally
exploited half-sib family designs; within the animal production
context, half-sibships provide large families that are highly
suitable for DNA pooling. Estimators for QTL position and
effect have been proposed that make use of information
from flanking markers. We present formulas derived by the
delta method for the asymptotic variance of these
estimators.

The half-sib design is particularly well suited to animal
genetics, for both laboratory and breeding species (Georges
et al. 1995; Weller et al. 1990). DNA pooling techniques
applied to selected samples allow direct estimation of marker
allele frequencies within the best and worst performing
animals of a class of half-sib progeny; this allows great
savings in terms of genotyping and data collection compared
to individual genotype determination. This method does
have its drawbacks, such as loss of information about joint
marker inheritance—allelic frequencies are known but
genotypic frequencies are not. Additionally, imprecise values
stemming from technical error constitute an additional
source of inaccuracy (Lipkin et al. 1998).

Darvasi and Soller (1994) showed how DNA pooling can
be combined with selection to find association between
a marker and a QTL using a backcross, an F2, or a half-sib
family. Dekkers (2000) extended this method to consider
two-marker (interval) mapping and to allow the estimation of
the QTL position.

Methods

We consider a QTL Q (with alleles Q and q) flanked by two
markers (M and N), each with two alleles (M, m and N, n,
respectively). A half-sib family design is considered, where
the common sire has haplotypes MQN/mqn, while not
sharing marker alleles with its mates (backcross-like). The
family size is n. The recombination fraction between the
markers is h. The recombination rate between M and Q is
hM. Progeny receiving the Q allele (respectively, the q allele)
from the sire has a phenotypic distribution following an
N(lQ,r) (respectively, an N[lQ,r]). The parameter of
interest is a ¼ lQ � lq. Within the common framework
of selective DNA pooling (Darvasi and Soller 1994), a is
experimentally determined by mixing DNA samples from
either the top (upper tail) or worst (lower tail) performing
animals for a given trait. Further, marker frequencies are
determined within each tail. Information on the overall
distribution is assumed sufficient to suppose the grand mean
l and r known. Algebraic approximations to the variances
of the estimators of hM and a will be given.

Let pUM denote the frequency of progeny in the upper tail
that received the allele M, that is, PR[MjU ]. The rest of the
subscripts have analogous meanings. The observed pro-
portion corresponding to pum is pum. The estimator of hM
based on a single tail (Dekkers 2000) is

ĥhM ¼ p̂pUM � p̂pUQ

1 � 2p̂pUQ
ð1Þ

where

p̂pUQ ¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 2p̂pUM Þð1 � 2p̂pUN Þ

1 � 2h

r
ð2Þ

Let lU and lL be the means of phenotypes in the upper
and the lower tails, respectively. Regarding a, if

l̂lULQ ¼ p̂pUQðl̂lU � lÞ þ p̂pLQðl̂lL � lÞ
p̂pUQ þ p̂pLQ
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then an estimator for the other allele, q, is

âa ¼
l̂lULQ � l̂lULq

i2s
ð3Þ

where is is the selection intensity associated with a tail of
size s (Falconer 1989).

Distribution of the Position Estimator

As seen in the Appendix, the d-method (Bishop et al. 1975)
states that hM is approximated by a normal distribution with
mean hM and variance-covariance matrix

VarðhM Þ’G9 � Varð~̂nn~nnM Þ �G ð4Þ
where

G ¼ @hM
@~nnM

and nM is the observed allele frequencies, being its variance
Var(nM) as shown in equation (9).

Distribution of the Effect Estimator

The distribution of phenotypes did not affect the position
estimation, except through the probability of QTL alleles
in the tails. For the estimation of a, we assume normal
distribution of phenotypes in both groups: offspring in-
heriting the Q allele, and offspring inheriting the q allele.

Some additional notation is described:

� lU and rU
2 are the mean and the variance of the

phenotypes above the u threshold; it is easily seen that
for an overall normal distribution N (l, r),

lU ¼ lþ r
/ðu9Þ

1 � �ðu9Þ

and ( Johnson and Kotz 1970)

r2
U ¼ r2 1 þ /ðu9Þu9

1 � �ðu9Þ �
/ðu9Þ

1 � �ðu9Þ

� �2� �

where u9 ¼ (u � l)/r. In our case, the phenotypic
distribution is a mixture of normals, so these
expressions should be altered accordingly.

� lUQ is the mean of offspring above the u threshold
inheriting the q allele.

Analogous definitions apply for L and q subscripts.
Let the unobserved sample consist of (Xi, Yi) values, with

i 2 {1, . . . , n}, where Xi represents the parental QTL allele
of individual i:

Xi ¼
0; q

1; Q
; XiWB 1;

1

2

� ��

and Yi is the continuous phenotype with conditional
Gaussian distribution:

Yi jXi
W N lþ a Xi �

1

2

� �
;r

� �
:

Let us define:

� the indicator

I Ui ¼ v½u;‘ÞðYiÞ
signaling whether the individual i is in the upper tail;
analogously, Ii

L;
� the tail size

nU ¼
Xn
i¼1

I Ui

the number of individuals in the upper tail; analo-
gously, nL;

� the estimator of the tail mean

l̂lU ¼
0; nU ¼ 0Pn

i¼1
Yi Ii

nU
; nU. 0

(

analogously for lL;
� the unobserved proportion estimators

p̂pUQ ¼
0; nU ¼ 0Pn

i¼1
Xi Ii

nU
; nU. 0

(

actually estimated by p̂pUQ (2); let p̂pUq ¼ 1 � p̂pUQ

analogously for the lower tail.

The covariance matrix J := Var(l̂lU, l̂lL, p̂pUQ, p̂pLQ) is
computed taking into account:

� Var(lU): it is seen (10):

EðlU Þ’ lU

and similarly for the variance (11):

VarðlU Þ ¼ r2
UE

1

n̂nU

� �
ð5Þ

where the notation E[1/nU] implies substituting zero
for the inverse of nU in the highly unlikely case of an
empty upper tail (nU ¼ 0); adequate bounds are
computed as shown in the Appendix ( p stands for
pUQ):

lower bound (Equation 12)

E
1

n̂nU

� �
� 1

pðnþ1Þ ½1� ðnþ 1Þpnð1� pÞ � ð1� pÞnþ1�

upper bound (Equation 13)

E
1

n̂nU

� �
� 1

pðnþ 1ÞE
n̂nU þ 1

n̂nU

� �

and according to Lynch and Walsh (1998, p. 818)

E
n̂nU þ 1

n̂nU

� �
’

nU þ 1

nU
1 þ n� nU

nnU ðnU þ 1Þ

� �

Note that this result is not adequate to directly
approximate E(1/nU).
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Despite unavailability of E(1/nU), the above bounds
show that the approximation achieved with r̂rU

2/nU is
adequate for (5) with n large enough.

The following relations are obtained by the same
reasoning:

VarðpUQÞ ’
pUQð1 � pUQÞ

nU

CovðpUQ; pLQÞ ¼ 0

CovðlU ; pUQÞ ’
pUQðlUQ � lU Þ

nU

Eventually:

J ¼

r2
U

n̂nU
0

pUQðlUQ�lU Þ
n̂nU

0

0
r2
L

n̂nL
0

pLQðlLQ�lLÞ
n̂nL

pUQðlUQ�lU Þ
n̂nU

0
pUQð1�pUQÞ

n̂nU
0

0
pLQðlLQ�lLÞ

n̂nL
0

pLQð1�pLQÞ
n̂nL

2
666664

3
777775

The matrix of partial derivatives of the estimator (3) of a with
respect to (lL, lU, pLQ, pUQ) is:

G :¼ @a
@ðlL; lU ; pLQ; pUQÞ

¼ 1

i2s

pLQ

pLQþpUQ
� 1�pLQ

2�pLQ�pUQ
pUQ

pLQþpUQ
� 1�pUQ

2�pLQ�pUQ
pUQðlL�lU Þ
ðpLQþpUQÞ2 þ ð1�pUQÞðlL�lU Þ

ð2�pLQ�pUQÞ2

pLQðlU�lL Þ
ðpLQþpUQÞ2 þ ð1�pLQÞðlU�lLÞ

ð2�pLQ�pUQÞ2

0
BBBBB@

1
CCCCCA

therefore, after application of the d-method,

VarðâaÞ ’ G9 � J �G: ð6Þ

Results

Simulations were performed to check the adequacy of the
proposed approximations. The experimental design and
genetic model, both described in the Methods section, led to
the results shown in Table 1 for 10,000 iterations. The
‘‘Simulation’’ column displays observed standard deviations
of the sampling distribution of the estimator across the
10,000 iterations. The ‘‘Predicted’’ column was obtained from
formulas 4 and 6, with parameters replaced with population
values, derived from the values chosen for simulation.

The study explored several combinations of sample sizes,
interval widths, and substitution effects. Unless specified in
Table 1, reference values for those parameters are taken:
a family of 5,000 half-sibs, an interval 50 cM wide, and
a substitution effect a of 0.5 environmental standard devi-
ations. Upper and lower tails comprise 10% of progeny each.

Discussion

It can be concluded from our results that estimation of the
hM variance is accurate for marker brackets wider than

20 cM. Shorter intervals lead to distribution of the position
estimator not holding within the parameter space (corre-
sponding to the intermarker gap); thus, tail values agglom-
erate at boundaries. The presented formulas can be used to
compute the probability of erroneously locating a QTL
exactly at a marker position.

It was also noted that the proposed approximations
degrade when the effect a exceeds one standard deviation. A
likely explanation is the departure from normality of the
overall phenotypic distribution when the Q, q mixture
components are too separated.

All of the limitations mentioned so far are related to the
single fact that variances of estimators are computed making
use of asymptotic theory, which notably relies on regularity
conditions.

This study did not address issues such as influence of
phase for small QTL effects, and narrow marker intervals, on
normality of asymptotic distribution of the effect and
position estimators. These deserve further study.

Large samples, above 5,000 half-sibs, are required for the
proposed formulas to achieve fair results. Study of small
sample distributions must account for lack of normality,
and inferences should no longer rely on asymptotic theory.
Exploration of the behavior of the estimators under small-
sample scenarios requires additional research. A novel
approach based on resampling methods is being developed
by the authors (Carleos et al. 2002).

Appendix
Distribution of the Position Estimator

Assuming fixed selection thresholds, the unobserved
absolute genotypic frequencies follow a multinomial distri-
bution:

Table 1. Variances of position and effect estimators.

Position estimator Effect estimator

Parameters Predicted Simulation Predicted Simulation

a
0.25 0.064 0.064 0.032 0.041
0.50 0.032 0.033 0.038 0.039
1.00 0.017 0.018 0.039 0.038
2.00 0.012 0.012 0.003 0.027

cM

10 0.013 0.027 0.038 0.037
25 0.022 0.022 0.038 0.040
50 0.032 0.033 0.038 0.049

100 0.024 0.026 0.038 0.075

n

1,000 0.076 0.071 0.086 0.108
5,000 0.032 0.033 0.038 0.039

10,000 0.021 0.020 0.027 0.025
50,000 0.009 0.009 0.012 0.014

The QTL effect a is expressed in environmental standard deviations, and

interval width in cM; n is the sample size.
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~nnMN :¼ðnLMN ; nLMn; nLmN ; nLmn; nC ; nUMN ; nUMn; nUmN ; nUmnÞ
,!Bðn; ½pLMN pL; pLMnpL ; pLmN pL; pLmnpL ; pC ;

pUMN pU ; pUMnpU ; pUmN pU ; pUmnpU �Þ ð7Þ

being nlmn, the absolute frequency of genotype MN

in the lower tail; analogously for the other subscripts. Here,
C indicates a central class, comprising the individuals not
selected.

The ‘‘observed’’ (i.e., estimated by means of DNA
pooling) allelic frequencies are:

~̂nn~nnM ¼ ðn̂nL; n̂nLM ; n̂nLN ; n̂nU ; n̂nUM ; n̂nUM Þ
¼ ðnLMN þ nLMn þ nLmN þ nLmn; nLMN þ nLMn;

nLMN þ nLmN ; nUMN þ nUMn þ nUmN þ nUmn;

nUMN þ nUMn; nUMN þ nUmN Þ ¼ A �~nnMN ð8Þ

where counts n carry subscripts indicating tail and allele, and
with A, the matrix that relates observed and unobserved
absolute frequencies, being

A ¼

1 1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 1 0

0
BBBBBB@

1
CCCCCCA

so

Varð~̂nn~nnM Þ ¼ A �Varð~nnMN Þ �A9 ð9Þ

The estimator (1) of hM, averaged over the two tails, is
rewritten as

ĥhM ¼ 1

2
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nUM � n̂nU

2n̂nUN � n̂nU

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nLM � n̂nL

2n̂nLN � n̂nL

s" #

The multinomial frequencies (7) can be approximated by
a normal distribution. The observed frequencies (8) are
a linear transformation of those, so they are asymptotically
normal. The estimator hM is a nonlinear function of the
observed frequencies, defined on an open subset and
differentiable at their expected values, E[nM] ¼ AE[nMN].
Should these conditions hold, the d-method states that hM is
approximated by a normal distribution with mean hM and
variance-covariance matrix

VarðĥhM Þ ’ G9 �Varð~̂nn~nnM Þ �G

where

G ¼ @hM
@~nnM

and Var(nM) is (9). G can be estimated by:

ĜG ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2h

p

8

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nLM�n̂nL
2n̂nLN�n̂nL

q 2n̂nLM�2n̂nLN
ð2n̂nLN�n̂nL

Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nLM�n̂nL
2n̂nLN�n̂nL

q 2ð2n̂nLN�n̂nLÞ
ð2n̂nLN�n̂nL

Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nLM�n̂nL
2n̂nLN�n̂nL

q �2ð2n̂nLM�n̂nLÞ
ð2n̂nLN�n̂nL

Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nUM�n̂nU
2n̂nUN�n̂nU

q 2n̂nUM�2n̂nUN
ð2n̂nUN�n̂nU

Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nUM�n̂nU
2n̂nUN�n̂nU

q 2ð2n̂nUN�n̂nU Þ
ð2n̂nUN�n̂nU

Þ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n̂nUM�n̂nU
2n̂nUN�n̂nU

q �2ð2n̂nUM�n̂nU Þ
ð2n̂nUN�n̂nU

Þ2

2
666666666666666666666664

3
777777777777777777777775

:

Expectation of lU

Eðl̂lU Þ ¼E

P
YiIiP
Ii

� �
¼ E E

P
YiIiP
Ii

� �����n̂nU
� �

¼
Xn
nu¼1

Pr½n̂nU ¼ nU �E
P

YiIiP
Ii

����n̂nU ¼ nU

� �

¼
��Yi9 :¼Yi jYi.u

��¼Xn
nu¼1

Pr½n̂nU ¼ nU �E
PnU

i¼1Yi 9

nU

� �

¼
X

Pr½nU �
1

nU

XnU
i¼1

E½Yi9� ¼
X

Pr½nU �
nU

nU
lU

¼ lU Pr½n̂nU � 1�’lU ð10Þ

Variance of lU

Varðl̂lU Þ ¼E

P
YiIiP
Ii

�lU

� �2� �

¼E E

P
YiIiP
Ii

�lU

� �2� �����n̂nU
� �

¼
Xn
nu¼1

Pr½n̂nU¼nU �E
P

YiIiP
Ii

�lU

� �2� �����n̂nU ¼ nU

� �

¼
��Yi9 :¼Yi

��
Yi.u

��
¼
Xn
nu¼1

Pr½n̂nU ¼ nU �E
PnU

i¼1Yi9

nU
�lU

� �2� �

¼
Xn
nu¼1

Pr½n̂nU ¼ nU �E
PnU

i¼1ðYi 9�lU Þ
nU

� �2� �

¼
Xn
nu¼1

Pr½n̂nU ¼ nU �
1

n2
U

E
XnU
i¼1

Yi9�lU Þ
 !2" #

¼
Xn
nu¼1

Pr½n̂nU ¼ nU �
nU

n2
U

r2
U ¼r2

UE
1

n̂nU

� �
ð11Þ

Appropriate bounding values for the expectation constitut-
ing the last factor, E[1/nU] in (11), can be determined as
follows (p denotes pUQ):
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lower bound

E
1

n̂nU

� �
¼
Xn
k¼1

1

k

n!

k!ðn�kÞ!p
kð1� pÞn�k

�
Xn
k¼1

1

kþ 1

n!

k!ðn�kÞ!p
kð1� pÞn�k

¼
Xn
k¼1

n!

ðkþ 1Þ!ðn�kÞ!p
kð1� pÞn�k

¼ 1

pðnþ 1Þ
Xn
k¼1

ðnþ 1Þ!
ðkþ 1Þ!ðn�kÞ!p

kþ1ð1� pÞn�k

¼ 1

pðnþ 1Þ
Xnþ1

k¼2

ðnþ 1Þ!
k!ðnþ 1�kÞ!p

kð1� pÞnþ1�k

¼ 1

pðnþ 1Þ ½1�ðnþ 1Þpnð1� pÞ� ð1� pÞnþ1� ð12Þ

upper bound

E
1

n̂nU

� �
¼
Xn
k¼1

1

k

n!

k!ðn� kÞ! p
kð1 � pÞn�k

�
Xn
k¼1

kþ 1

k

n!

ðkþ 1Þ!ðn� kÞ! p
kð1 � pÞn�k

¼ 1

pðnþ 1Þ
Xn
k¼1

kþ 1

k

� �
ðnþ 1Þ!

ðkþ 1Þ!ðn� kÞ!
3 pkþ1ð1 � pÞn�k

¼ 1

pðnþ 1ÞE
n̂nU þ 1

n̂nU

� �
ð13Þ
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