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Abstract: In the last few years association and linkage disequilibrium studies have come to play an
important role in the search for the location of genes underlying certain traits, since linkage analyses
provide less accurate estimations of the positions of the genes as the complexity and rareness of the
traits increase, partly due to the difficulty of getting large and informative enough samples. These
approaches have been proven to be able to narrow the distance between the expected site of the locus
and the nearest marker, and to reduce sample requirements in terms of size and structure when
compared to those needed for linkage studies to obtain evidence for a gene’s involvement. On the
other hand, the lack of robustness with respect to population history and structure makes them still a subject of
constant research. The kind of sample, the analysis to perform, the approach of seeking association with a particular
marker versus conducting a complete scan of a wide part of the genome, the type and number of markers used, the
nature of the trait (discrete or continuous), and the underlying model of the disequilibrium are some of the different
factors needed to be taken into account when considering association studies. Any of them would by itself justify an
individual review, but it is our intention to provide an overall perspective of the different approaches available at the
current time.

INTRODUCTION

One of the main concerns of genetics is the full
understanding of the behaviour of genes. With the
advancement of molecular techniques there has been a
growing interest in characterizing the actual genes
underlying a certain trait and the particular place where these
genes lie throughout the whole genome. Traditionally,
linkage analysis has been used as an important tool to find
these locations, first with biochemical and protein markers
[1], and later with molecular ones such as Restriction
Fragment Length Polymorphisms (RFLPs) [2,3], and then
Short Tandem Repeats (STRs), of which the most known are
microsatellites, [4-7] and, recently, Single Nucleotide
Polymorphisms (SNPs) [8,9]. However, as the traits studied
become more rare and complex, the need for sufficient dense
marker sets and a high number of informative individuals
may make linkage a somewhat limited and even
unsuccessful procedure [10-13]. To deal with this obstacle,
in the last few years more attention has been paid to
association and linkage disequilibrium (sometimes wrongly
used as synonymous concepts) studies, since these
approaches have proven to be more powerful for genes of
small to modest effects [14,15], reduce sample requirements
in terms of size and structure when compared to those
needed for linkage studies to obtain similar significance and
narrow the distance between the expected site of the locus
and the nearest marker (see Table 1 in [16] for a comparison
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of mapping distances obtained by linkage and by association
procedures).

On the other hand, the lack of robustness with respect to
population structure makes them still a subject of constant
research. In the present article we intend to review the
existing strategies that have been developed within the last
years in association analysis. After describing the underlying
theoretical basis for association and linkage disequilibrium
(LD), we will look at the methods for detecting association
between markers and discrete traits (affected/non-affected
type), first with samples of individuals drawn randomly from
the population, and secondly with the use of family
information (e.g.: family trios -father/ mother/affected child).
Then we will explore the possibilities of genome scans using
association approaches. Finally we will review the existing
extensions to quantitative traits.

LINKAGE, ASSOCIATION AND LINKAGE
DISEQUILIBRIA: THEORETICAL AND BIOLO-
GICAL BACKGROUND

The underlying basis of linkage is physical. At the
genetic level, two genes are said to be linked when the
proportions in which a parent produces recombinant and
nonrecombinant haplotypes are different. In particular, they
will be completely linked when a parent only segregates non-
recombinant haplotypes. A necessary condition for linkage to
happen is that the two genes are located on the same
chromosome. It is not a sufficient condition, though, as there
may be no linkage detected between two genes on the same
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chromosome if they are situated in opposite extremes of it,
since if sufficiently far apart they segregate independently.

How linked two genes are is measured by the
recombination fraction, θ, defined as the probability that a
parent produces a recombinant gamete. It ranges from 0
(complete linkage) to 1/2 (absence of linkage). The reason
for having 1/2 as the highest value is fairly simple: let A and
B denote two unlinked loci and A1, A2, B1, B2 some of their
alleles. Then if an individual has an A1B1|A2B2 genotype, the
probability of transmission of any of the four haplotypes
A1B1, A2B2, A1B2 and A2B1 should be equal (and obviously
equal to 1/4). But the only way in which θ·1/2 = P(A1B1) =
P(A1B1) = P(A1B2) = A2B1 = (1–θ)·1/2 is with θ being equal
to1/2.

Gametic disequilibrium, or gametic phase disequilibrium
[17] is more a statistical rather than a physical concept,
although it may indeed have physical implications. Two
genes are said to be in gametic disequilibrium if the
frequencies of their possible haploid genotypes do not equal
the products of the frequencies of their respective alleles. For
instance, if we consider loci A and B from the previous
paragraph, let p1, q1, p2 and q2 be the frequencies of A1, A2,
B1 and B2 alleles, respectively, and P11, P12, P21 and P22 those
of A1B1, A1B2, A2B1 and A2B2 haplotypes, respectively. Then
A and B would be in an equilibrium state if P11 = p1p2, P12 =
p1q2, P21 = q1p2 and P22 = q1q2, and we say that they are in
gametic disequilibrium in any other case.

In order to measure the possible disequilibrium between
these two genes, the disequilibrium rate is defined as

D = P11P22 – P12P21 ,

or, equivalently, as

D = P11 – p1p2.

It is easy to see that after an initial disequilibrium D0 in a
certain population for which we suppose random mating and
the same recombination rate between males and females, θ,
the disequilibrium rate after t generations will have
descended to (see, for instance, [18])

Dt = (1 – θ)tD0,

so the higher the recombination rate is, the faster the
disequilibrium disappears.

It is not unusual to find (e.g. [8,19]) the terms
"association" (or "gametic disequilibrium") and "linkage
disequilibrium" used in a synonymous way, although strictly
speaking they do not apply to the same concepts, being
actually the second a particular case of the first. The noun
"association" refers to the lack of randomness in the
frequencies of the haplotypes for a certain couple of loci, or,
equivalently, to the non-independence of the alleles of one
locus with respect to the other at the time of determining
haplotypes. It is, indeed a synonym for "gametic
disequilibrium". When this disequilibrium is produced by the
physical proximity of the two genes, i.e., they show
association because they are linked, then we can properly
talk of "linkage disequilibrium". This distinction should not

be underrated, since as we will soon see, there are several
other situations which can lead to a situation of gametic
disequilibrium, the so called spurious associations.

Some of the various factors which can eventually produce
an association are the following:

• Founder effect: an external individual from a different
population introduces through his offspring a previously
non-existing allele to the one under study, which will be
therefore associated with the allelic configuration of the
loci surrounding the one of interest.

• Mutations: this phenomenon is analogous to the
previous one, except for the fact that the new allele is
introduced in the population not by an external
individual by means of reproduction, but due to the
mutation of an existing allele in one of the population
members.

• Sudden changes in population size: events like a
bottleneck effect can induce the appearance of
associations, since the individuals surviving the process
do not necessarily represent the former population, with
the subsequent changes in allelic and haplotypic
frequencies.

• Natural selection: the pressure of selection towards
favouring phenotypes favours in its turn specific allelic
combinations, thus creating disequilibrium.

• Genetic drift: when dealing with finite populations, the
effect of random genetic drift is capital, since it strongly
affects the frequencies of the alleles.

• Population structure: probably the most hard to handle
sources of spurious associations are admixed
populations and population stratification. These are two
frequent events that, if not dealt with care, easily mask
the results by creating associations between unlinked
loci which may be confounded with true linkage
disequilibrium. The use of populations which result from
the admixture of several others is therefore, in general,
not recommended to perform association analyses.
However, when admixing is well understood, we can
take advantage of the fact that the admixture of
populations itself generates disequilibria in order to
detect linked genes. Briscoe et al. [20] proved that if we
cross into an F1 two populations for which the marker
loci considered differ significantly in their allele
frequencies and these loci are in Hardy-Weinberg and
linkage disequilibria, then in the F2 obtained by crossing
the two F1 the only disequilibrium that will remain will
be that due to physical linkage, whereas the spurious one
created in the original admixture procedure will have
disappeared in the crossing process.

DETECTION OF DISEQUILIBRIUM AT THE
POPULATION LEVEL

The common feature of all the procedures in this section
is that they all are carried out by extracting random samples
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of individuals from the population, whereas the other main
group of methods takes as sample units nuclear families,
consisting in one or the two parents and one or more
members of their offspring. We will take a look first at the
"classic" procedures, which are nothing but the plain
application of standard statistical tests to this particular case,
to move next to the more somewhat "sophisticated" tests
specifically developed for association analysis.

Classic Procedures

These procedures basically look for association from the
population by means of the analysis of contingency tables
with chi-square statistics. We will not deal with quantitative
traits here (deferred to last section), so we will assume we
are looking for association of a marker with a dichotomous
trait. For the sake of ease of notation, we will use disease-
like terminology, hence we will denote D as the allele of the
disease locus responsible for the affected status, which is the
one we will be trying to associate with one of the alleles of
the marker, and + as the allele responsible for the non-
affected status. Let n be the number of individuals sampled.
If the haplotypes for the marker (denoted M, with alleles M1

and M2) and disease loci were known, then we would display
them as in (Table 1).

Table 1. Contingency Table for Haplotype-Known Chi-
Square Analysis

D + Totals

M1 DMn
1 +1Mn

1Mn

M2 DMn
2 +2Mn

2Mn

Totals Dn +n 2n

The usual Chi-square test would be applied to test for the
null hypothesis of independence between the marker and the
disease locus. In the case of not having enough observations
in any of the cells (five or more per cell are required),
Fisher’s exact test or approximative methods should then be
applied. Recent examples of the application of this method
can be found in [21,22].

An equivalent way of looking at the problem which
arrives at the same statistic is by performing a Chi-square
goodness of fit test, which compares the observed values of
haplotypic frequencies with those expected under the null
hypothesis of nonexistence of disequilibrium. The data
would then be presented as in (Table 2).

Nevertheless, in most practical situations the actual
frequencies of the haplotypes of the marker and the disease
locus are not available, because it is seldom possible to
ascertain the phase of the genotypes. In most cases we also
cannot determine the genotype for the disease locus.

To overcome this problem, when this occurs the usual
strategy is to sample from two groups in the population: the
affected individuals, called cases, and the unaffected ones,
called controls. We then look for associations with one of the
genotypes of the marker, in which case we would display the
data in a contingency table such as (Table 3).

Table 3. Case-Control Haplotypic Contingency Table

M1M1 M1M2 M2M2 Totals

Case
A

MMn
11

A
MMn

21

A
MMn

22 An

Control
U

MMn
11

U
MMn

21

U
MMn

22 Un

Totals
11MMn

21MMn
22MMn 2n

Alternatively, we can try to find an association with the
presence of a particular allele of the marker, instead of with
the genotypes, in which case we would have something like
(Table 4).

Table 4. Case-Control Allelic Contingency Table

M1 M2 Totals

Case
A
Mn

1

A
Mn

2 An

Control
U
Mn

1

U
Mn

2 Un

Totals
1Mn

2Mn 2n

In either case the procedure to follow would be exactly
identical to the previous ones: compute the Chi-square
statistic and study the significance of the table to test the
independence of rows and columns.

If we have extra information, such as the inheritance
mode and penetrances of the disease gene, it is possible in
some cases to obtain the haplotype frequencies for the
marker and disease locus, in which case we would be able to
apply more accurate tests than the case-control ones.

For a deeper insight into this classical Chi-square tests,
the reading of [18,19] is recommended.

Table 2. Contingency Table of Observed Vs. Expected Values for Haplotype-Known Chi-Square Analysis

M1D M1D M2+ M2+ Total

Observed values DMn
1 DMn

1 +2Mn +2Mn 2n

Expected values 2n DM pp ˆˆ
1

2n DM pp ˆˆ
1

2n +ppM ˆˆ
2

2n +ppM ˆˆ
2

2n
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Specific Procedures

We will take a look here at the various approaches that
have been proposed by several authors to look for association
in samples drawn at the population level. This section could
have been entitled “Analyses with likelihoods and alternative
procedures”, since it is mostly by devising and testing the
appropriate likelihoods that new methods for population-
based LD analysis are being developed. The other major
trend in population-based analysis is the use of Chi-square
tests applied to case-control sampling structures, supported
by some authors (e.g. [12,23,24]), in spite of the awareness
of the high susceptibility and lack of robustness of these
methods with respect to population stratification. In general,
these methods provide good results when knowledge of the
population structure is sufficient to assure an ascertainment
scheme which properly matches cases and controls to the
existing strata, or which focuses on particular subgroups
[13]. Obviously, the best situation is that in which the
population under study has not gone under any artificial,
spurious association-causing event. Then, simply comparing
the frequencies of alleles in affected and nonaffected
individuals turns to be a good enough procedure. An
example of such a case is the pioneering paper in LD
mapping of Hästbacka et al. (1992) [15]. They mapped the
diastrophic dysplasia locus using the information provided
by the disequilibrium detected in the Finnish population to
apply Luria-Delbrück equations, originally developed for
bacterial mutation studies, and adapted in this work to obtain
recombinational distances from LD measures. Finally, we
will take a look at other alternative approaches that have
been proposed.

One of the most known and applied (see, for instance,
[26,27]) of the likelihood ratio (LR) tests is the one proposed
by Terwilliger [28]. His study was motivated by the
necessity of getting more power than that obtained until then
from the Chi-square tests when the marker locus is
multiallelic (meaning with that more than two alleles), which
is the case with, for example, microsatellites. The problem
comes from the fact that, for a marker with m alleles, a 2×m-
dimensional contingency table must be analysed, which
provides a statistic distributed as a Chi-square with m – 1
degrees of freedom. Therefore, the higher the number of
alleles, the more power is lost, since the increase in degrees
of freedom comes from the loss of information of dealing
with a higher number of alleles -remember that the
underlying assumption up to now is that we are trying to
detect an association of the disease allele in the disease locus
with one of the alleles in the marker, so it should be easier to
determine if one out of two alleles is associated than if one
out of ten is.

The solution proposed by Terwilliger consists of a LR
test in which a single parameter is introduced, which
measures the proportion of excess of the potentially
associated allele in the affected individuals with respect to
the whole population. Suppose the disease allele D was
associated when introduced in the population to allele i of a
nearby marker. As generations pass by, recombinations make
it possible to find other marker alleles in the same haplotype
than D, but there will still be an excess of i alleles coupled
with D. To quantify this excess, a parameter λ is defined as

the proportion of increase of allele i in the affected
chromosomes with respect to the population frequency of the
rest of the alleles. For example, if allele i is found with
probability 1/3 in the whole population and with probability
1/2 in the affected individuals, then.

λ = .

According to this model, P(i|D) = qi = pi + λ(1– pi), and
for each allele j≠i, qj = pj – λ pj, where pk is the frequency in
the population of allele k of the marker locus, for k = 1,…,m,
being m the number of alleles.

Furthermore, as pi = qipD + ri(1– pD), where ri = P(i|+), ri can
be calculated as ri = pi – λ(1– pi)pD /(1– pD), and analogously,
for each j≠i, rj = pj + λpjpD /(1– pD), hence the model is
completely determined.

Therefore, given a sample in which there are Xj

individuals with haplotype j|D and Yj with haplotype j|+ for
each j = 1, ..., m, Terwilliger proposes the following as the
likelihood function:

where subindex i in the likelihood refers to the fact tha t
marke r a lle le  i is  a s sume d to be as s oc ia ted to D.

However, to avoid making assumptions on which one is
the associated allele, each Li(λ) can be weighted by the
frequency of each allele i –understood as the probability of
allele i being the one initially associated to D–, so the
following joint likelihood is proposed:

And the likelihood ratio test takes the usual shape:

whose distribution is claimed [28] to be 1/2 of a X2
1, and

being λML the maximum likelihood (ML) estimator of λ, with
λ = 0 as null hypothesis, since that is the case in which
disequilibrium does not exist.

In order to assess the fitness of the Chi-square
distribution to the proposed statistic under the null
hypothesis some simulation studies were performed, which
also helped to compare the power of this test with that of the
usual contingency table-based ones. After varying the values
of λ, pi, or m, the main conclusions were that the higher the

1/2 - 1/3
=

1
42/3

Li(λ) =
m

∑
j=l

qj    rj
Xj      Yj ,

L(λ) =
m

∑
i=l

pi Li (λ).

Λ = - 2ln L(λ =0)

L(λML)
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number of alleles, the more conservative the Chi-square
assumption appeared to be, and that the power of this test
was generally higher than that of the independence test. In
addition, the Chi-square test power decreases rapidly as the
number of marker alleles increases, while the proposed test is
much more stable [28].

The test can be easily generalised to the case of more
than one allele of the same marker associated to the disease
allele, although Terwilliger suggests that it is not worth to
consider more than two associated alleles.

Another extension can be made to analyse simultaneously
multiple loci. It is based in modelling the decay of the
parameter λ as a function of θ, the recombination rate. Since
the physical situation of the markers is known, then for a
given point inside the markers map, the recombination rate
of this point with each of the markers is a known constant, so
the likelihood can be maximised for the parameters of the
function converting θ into λ and for the physical position
along the marker map. The value of the likelihood in the ML
estimator of the parameters can then be compared in the
usual way with the value under the null hypothesis (λ=0) and
form the LR statistic.

Multipoint likelihoods are in general very useful tools to
perform fine mapping of traits, because they are usually
dependent on and thus take advantage of parameters related
to physical position along the chromosome. Consequently,
the maximisation of the likelihood provides ML estimations
and confidence intervals of positions or recombination rates
of the disease locus. The likelihood can also be plotted
against map position to obtain a graphical overview of its
variation and its maximums. In particular, Terwilliger
applied his method to the data related to cystic fibrosis (CF)
reported by Kerem et al. [29], and obtained an estimation of
the position of the CF gene only 0.16 cM away from its
predicted position according to [29].

In spite of these seemingly good results, Terwilliger’s
method has a certain number of weak points. For example,
Devlin et al. [30] noted the lack of treatment of evolutionary
variances in this method. Is conservativeness and departure
of the assumed asymptotic distribution have recently been
addressed, and alternative models based on mixture
distributions and posterior weights on the likelihood have
been proposed [31]. We believe that another arguable aspect
can be the assumption of independence between marker loci;
that is, the fact that association of a certain allele to the
disease allele does not induce an increase of the probability
of some other neighbouring locus’ alleles of being also
associated. This condition is necessary to compute the
multipoint likelihood in the way it is done, but it is not clear
that it holds easily. Apart from that, we think that another
point of discussion arises about the appropriateness of the
parameter λ from the way it is defined: λ is dependent on the
associated allele, so it does not seem rather natural to
compute the whole likelihood for a given marker with just
one only λ. Since as all the probabilities involved depend on
it, the conceptual gain we obtain from weighting the partial
likelihoods of each allele, thus taking all of them into
account, is in some sense lost when we calculate the
probabilities in each partial likelihood based upon the same

parameter. It would seem reasonable, therefore, to consider
an m-dimensional, m being the number of alleles of the
marker locus, λ-vector, and compute the likelihood of allele i
with its corresponding λi, to finally obtain the whole
likelihood for the locus depending on m parameters. These
ideas, however, are still under study and deserve further
investigation.

Another interesting likelihood method was the one
proposed by Xiong and Guo [32]. Their approach is
somewhat more elaborated that Terwilliger’s. They consider
a more general situation in which factors such as population
growth or the fact that the marker alleles frequencies vary
with time are taken into account. They also note that the use
of microsatellites needs to model the recombination rate. In
this respect, they assume a stepwise mutation model, in
which a certain allele only mutates to its immediately
superior or immediately inferior (in size) allelic state. The
population assumptions include nonoverlapping generations,
random mating and nonexistence of population substructures,
although on the other hand their modelling of the growth is
not limited to exponentially growing populations, as other
authors do [25,33].

Based on the same multinomial modelling of the sample
allele counts as Terwilliger, for a given time t, the probability
of obtaining the observed allele counts for the disease
chromosomes (               ) would be

where P(t) = {pid (t)
kid}i=l,…,m are the marker allele

frequencies from the disease chromosomes at time t, which
follow a Wright-Fisher population genetics model [32].
Taking expectations in the above equation over the
generations, the unconditional sampling distribution is
obtained, which is proportional to what will be considered as
the likelihood function at maximisation effects:

which is a function of θ, the recombination rate, since each
single E(pid (t)) is a function of θ.

This is not an easy expectation to compute, so
approximation methods are needed. Initially, a Monte Carlo
(MC) estimator of L(θ) was proposed [33], but Xiong and
Guo [32] found it to be rather unsatisfactory. They proposed
an alternate procedure consisting in the approximation of
L(θ) by means of the first and second order Taylor series
expansions of the marker allele frequencies         , i = 1,…,m.
The evaluation of the first and second moments     of
requires solving a system of differential equations which
eventually leads to the desired values, with dependencies on
θ, the disease allele frequency, the disease allele mutation
rate, the marker alleles mutation rates and the initial values
of          .

f k1  ,..., kmd     P (t)
d

=
kd   !

m

i=l
kid∏

m

i=l
pid∏ (t)

k
di

m

i=l

pid∏ (t)
k

diL (θ) = E ,

dd mkk ,,1 K

)(tp
di

)(tp
di

)(tp
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The method is extended to perform a multipoint analysis,
building what they called a “composite likelihood”, since, as
Terwilliger’s, it assumes independence between allele
marker frequencies at different loci to allow the formulation
of the whole likelihood as the product of each marker’s.
Another particular feature of this method is that it includes as
particular cases those in [25,28].

The method was applied to genes responsible of four
genetic diseases whose position was already located: CF,
Huntington’s Disease (HD), Friedreich’s ataxia and
progressive myoclonus epilepsy. The general conclusions
were that a first order approximation of the marker allele
frequencies in the disease chromosomes is good enough,
although second order approximations provide narrower
support intervals. Also, its performance is generally better
that that of the rest of methods to which it was compared,
with errors in the estimation of the location ranging from
approximately 10 kb, performing a multipoint analysis in the
HD example, to 75 kb -multipoint analysis for the CF gene
[32].

However, as the authors themselves mention, there are
still some obstacles to overcome in the quest for a
completely general and nonrestricted procedure: the
treatment of locus heterogeneity, allele frequencies in the
normal population, population substructure, incomplete
penetrance, phenocopies, or nonrarity of the disease are open
fields for further development of their technique. Rannala
and Slatkin [34] also pointed out the need for modelling the
frequency of the mutant chromosome, since Xiong and Guo
[32] assumed it as constant through time, which in most
cases is not valid.

Rannala and Slatkin’s [34] approach is slightly different.
They proposed a method with somewhat wider objectives:
the estimation of either the recombination rate with a certain
diallelic marker locus, the mutation rate or the age of the
allele that was supposedly introduced in the population some
generations ago.

They calculate the likelihood function by first obtaining
the distribution of coalescence times for a sample of
chromosomes descended from a nonrecurrent mutant
ancestor and modelling the process of recombination and
mutation, and base the likelihood on conditional probabilities
of the number of MA1 chromosomes after a certain jth

coalescence event conditioned on the number of MA1

chromosomes after previous coalescence events, M being the
disease allele and A1 the marker allele supposedly associated
with M. The resulting function to evaluate is:

where Yj denotes the number of MA1 chromosomes
immediately after the jth coalescence event, i is the number of

chromosomes in the sample carrying M, of which Y0 carry
allele A1 as well, tj the waiting time until i sampled
chromosomes carrying M coalesce to j–1 ancestral
chromosomes. The parameters upon which the likelihood
depends are θ1={u, v, t1, i, f, ξ}, with θ2={u, v, i}, θ3={{u, v,
t1, i} and θ4={ t1, i, f, ξ}, where u is the probability of
transition (by recombination or mutation) of MA1 to MA2 in
an interval dt, which involves c, the recombination rate, µ,
the mutation rate from A1 to A2, and p, the frequency of A1

among nonmutant chromosomes, v is the analogous for MA2

to MA1, which involves c, p, and ν, the mutation rate from A2

to A1, t1 the number of generations since the introduction of
the mutation, f is the fraction of the population sampled
(n/2N, being n the sample size and N the number of
individuals in the whole population), and ξ is a parameter
which incorporates the effects of population growth and
selection in the heterozygous individuals for M.

As it can be seen, the expression of the likelihood is
rather complex and has too many terms in it, so the authors
suggest a Monte Carlo estimation of P(Y0|θ1) based on
simulations of the distribution of Yi. Then, with the
knowledge of some of the parameters involved in the
computation, one of them can be left unknown to be
estimated and confidence intervals obtained.

The method was applied to three examples with different
results. In the diastrophic dysplasia (DTD) data [25], the
estimation of the recombination rate of the DTD allele with
the CSF1R locus was rather satisfactory and in agreement
with other studies [32,33], finding a distance from the marker
to the disease gene only approximately 10 kb larger than the
real one. However, when dealing with the estimation of the
ages of the alleles in the other two examples, the results were
not so positive. In spite of this, the method seems interesting
for practical association mapping, as it involves a large
number of parameters of interest, and future improvements
by developing more exact methods of estimation may lead to
better results.

Some of the criticisms that can be made to their method
are similarly applicable to other ones: nonrandom mating in
general, and population substructure in particular are still
lacking adequate treatment. Also, when the likelihood is used
to build likelihood ratio tests, either for testing a noninfinite
age of the mutation, or a recombination rate being different
from zero, the null hypotheses are both in the boundaries of
their corresponding parametric spaces, so the convergence of
the statistic to the known Chi-square distribution is not well
justified. In addition, the use of Monte Carlo simulations to
approximate the likelihood, together with the use of
estimations of the rest of the parameters instead of their real
values, introduces a source of variation which is not properly
taken into account.

Graham and Thompson [35] described a similar method
to that of Rannala and Slatkin, in the sense that they first
simulate a coalescent genealogy for a given sample of
disease alleles to then calculate the likelihood of the
observed sample through Monte Carlo (MC) estimations.
Their approach consists basically in performing several MC
realisations of backwards in time reconstructions of the
coalescent ancestry and place by simulation of disease-

P(Y0 | θ1)=

i

j=2

∏x

Yi=0

∑ ∑∑
i i-l

Yi-l=0

...
l

Yl=0

∫
t1 t2

∫
t2=0 t3=0

ti-1

∫
ti=0

P(Y0 | Yi ,t, θ2)...
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bearing haplotypes (or equivalently, recombination events),
mimicking the disease ancestry and what they call the
“recombinant classes”.

A recombinant class is defined as a subset of the sample
that is descended from a given recombination event [35], this
is, a subset of sample individuals identical by descent at the
marker locus. In this way they form a partition of the sample
with good properties for recombination count purposes.

The likelihood, as a function of the recombination rate
between the disease and the marker locus would take the
form:

where q is the vector of population allele frequencies at the
marker locus -assumed constant over time-, ∆ is a bivariate
demographic parameter including the time in generations at
which the disease allele was present as a single copy in the
population and the population growth rate, as a function of
time, Y is the vector of allelic counts for the marker in the
disease population and X is a vector of dimension equalling
the highest size of a recombinant class with X(i) being the
number of classes of size i. To evaluate L(θ), values of X are
sampled by simulation according to Pθ,∆ (X ).

To account for the variability on the likelihood estimation
and obtain confidence intervals for θ, a parametric bootstrap
approach is taken, and realisations of Y are generated under
the maximum likelihood estimate to reestimate θ for each
replication. When applied to a simulated example, this
method provided good results by estimating a recombination
rate of 0.005 for a marker with a disease locus for which the
actual one was 0.006. The authors also note the nonvalidity
of the Chi-square approximation of the minus twice the
loglikelihood ratio to obtain confidence intervals since it
assumes independence among marker alleles, but positive
correlation increases as the recombination rate decreases
[35].

The method was extended to interval and multipoint
mapping. The interval mapping procedure is essentially the
same as the single locus one, with the likelihood depending

on k recombination rates instead of on one, being k the
number of loci considered. Tested on a simulated example, it
seems to behave fairly good –the disease location was
estimated at θ = 0.000 from its true location [35]. As
desirable, the multilocus analysis provides better results than
the separate analyses of flanking markers in single-marker
mapping, since the confidence interval obtained is narrower
than those of the single-marker analyses. The approach for
multipoint mapping is slightly different, since the concept of
recombinant class has to be extended to include all the

markers at the same time, but it has not yet been properly
investigated.

In order to compare their method with other published
ones, the authors analysed the DTD data [25] and found the
results to be similar to those of previous studies [25,33,34],
both in point and confidence interval estimation, and in good
agreement with the real situation, obtaining an estimation of
the distance of the marker to the disease 15 kb larger than the
real one. When interval mapping was applied to the same
data, similar estimations were obtained, but it has the
advantage of providing indications of to which side of the
marker the disease locus is more likely to be located.

As a general comment, Graham and Thompson’s
approach fills some of the gaps left in other studies, such as
the consideration of multiallelic markers, the use of
multimarker techniques or the flexibility of the demographic
model. However, perhaps it may be arguable that too much
simulation is involved in the calculus -Monte Carlo sampling
of the recombinant classes plus bootstrapping to get
confidence bounds on the likelihood estimates. In spite of
their well developed analytical computation of the
probabilities of the observed disease-marker haplotypes
conditional on the recombinant classes, more real-data
validation may be needed, since the method was only
checked on a two isolated and well historically documented
populations as the Japanese and Finnish with two favourable
disease situations: one simulated by the authors and the other
the DTD disease.

Morris et al. [36,37] have applied Bayesian analyses into
association mapping by likelihood procedures. Their
approach considers diallelic markers, since it is designed to
be used with SNPs. In [36], they set an initial location for the
disease locus and determine the expected allele frequencies
of the markers at the left and right of that location,
conditioned on the chromosome’s ancestral state at the
disease locus (this is, the property of Identity By Descent -
IBD- with the founder chromosome), throughout the whole
candidate region by means of independent Markov
processes. These frequencies are used to estimate the
expected allele frequencies in affected and unaffected
individuals in the population. These, in turn, are put into the
likelihood in the usual way. The whole log-likelihood takes
then the following expression:

where L and R in the subindexes refer to the markers to the
left and right, respectively, of location x, Γ is a vector of
model parameters, which account for recombination,
mutation, and phenocopies, among other things, p is the
vector of observed allele frequencies and ω is a vector of
ancestral indicators -ωi = 1 if allele 1 of marker locus i is
present on the founder chromosome and 0 otherwise. The
“right” and “left-side” terms look rather familiar. The right-
side term, for example, is

L (θ) = Pq,θ,∆ ∑(Y ) = Pq(Y | X ) Pθ,∆(X )

RLTOT pxdataLpxdataLpxdataL ),,,|(ln),,,|(ln),,,|(ln ωΓ+ωΓ=ωΓ
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where      is the expected allele frequency for allele j at locus
i in the population with affection phenotype P, A means
affected, U unaffected, R is the number of marker loci, and
CR is a constant related to the disease frequency in the
population.

The final step is to use Markov Chain Monte Carlo
(MCMC) methods, in particular a Metropolis-Hastings
algorithm, to obtain posterior distributions for the model
parameter estimates. As an example it was tested on the CF
and HD genes data [29] with good results. The mean value of
the posterior distribution for the distance of the mutation to
its nearest marker was 96 Kb away from its true value,
although the 99% confidence interval does not include it.
When the dependence between case chromosomes is
modelled, the mean of the posterior distribution improves
and becomes 82 Kb away from its true value, this time being
included in the 99% confidence interval. However, with this
extra modeling, posterior distributions for the parameters
involved are flatter in general, as a consequence of an
increase in the variance, which produces wider confidence
intervals. The results regarding the HD gene are similar, with
the mean value of the posterior distribution being 0.1 Mb
away from its true value.

The advantages of performing the analysis in a Bayesian
framework are clear: one deals directly with a distribution of
the parameter, instead of with a single estimator, either point
or interval, and prior information about model parameters
can be readily incorporated into the model. The model
presented is more complicated than previous ones, since it
takes into account factors like phenocopies or recombination
rate heterogeneity across the candidate region. However, the
results, although in accordance with other studies, do not
seem to improve significantly the existing methods.

In [37], the procedure is identical once the likelihood is
computed. They follow, however, a different approach to
calculate the likelihood. First, it is separated in the part
corresponding to cases and the part corresponding to control
individuals. The likelihood of the cases is then calculated by
considering an arbitrary genealogical tree, conditioning the
likelihood on several parameters concerning the structure of
the tree and then summing over the possible tree
configurations. The MCMC methods are then applied to
approximate the sum, sampling from the conditional
distribution with a Metropolis-Hastings algorithm. When
applied to the CF gene the method provides a slightly worse
mean value for the location of the disease locus than the
previous one, at a distance of 0.148 Mb from the real value,
though in this case, it is included in the 99% confidence
interval.

Several other methods do not make an explicit use of
likelihoods for detecting association. For instance, Devlin
and Roeder [38] developed a method known as Genomic
Control in which a case-control design is analysed for

diallelic markers, assuming an additive genetic model, by
means of Armitage's trend test for genotypes,

where, if the locus considered has alleles A1 and A2, (Table 5)
shows the notation used.

Table 5. Table  of Allelic Counts for a Genomic Control
Test

A1 alleles

0 1 2 Totals

Case r0 r1 s2 R

Control s0 s1 s2 S

Totals n0 n1 n2 N

The innovation comes from realising and modelling how
populational and genealogical phenomena, like population
substructure or cryptic relatedness -this is, the fact that
sample individuals, although randomly selected, may be
related to some degree, this being more common amongst
cases than controls. These events lead to an increase in the
variance of the test statistic, modelled by a coefficient called
the variance inflation factor, denoted by λ, which depends,
among other variables, on the Wright's inbreeding
coefficient, F. The meaning and value of F are context-
dependent, since both matings between relatives and
population substructure can vary the correlation between
uniting gametes, which is what F measures.

The procedure then allows for the estimation of the
inflation factor λ and the adjustment of the trend test for
association of each locus with the disease. Certain
assumptions must be made (similar mutation rates among
loci under study, no strong subpopulation specific selection,
and small variation of F across loci) in order to assure that λ
is constant across loci.

For a particular marker i, under the hypothesis of linkage
equilibrium with the disease and no subpopulation structure
or cryptic relatedness,           . Allowing for extra variance,
             . If the marker is associated, then     follows a
mixture of chi-square distributions, one of them noncentered:
                                   , where ε is the prior probability of a
given observation being associated, and Ai the noncentrality
parameter. Specifying prior distributions for λ, ε, and Ai

allows Bayesian inferences through a Gibbs sampling
scheme to finally test whether marker i is associated or not.

The advantage of this Bayesian approach is that there is
no need for a Bonferroni correction to test for association in
a multilocus context. A careful choice of the priors,
especially that of ε, provides better performance in many
settings, while constraining the risk of false positives [38] -
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actually, even when the test is performed in a non-bayesian
framework, its results improve in many situations those of
other tests, like the Transmission/Disequilibrium Test (TDT,
[39], see next section for a description of the TDT), devised
to take into account population structure [40]. To refine the
location of the disease locus in a candidate gene approach,
after an initial screen of the region of interest, those markers
with highest posterior probabilities are investigated again
with new values for ε. If necessary, a locus-by-locus scheme
could be applied, with individual, locus-dependent, epsilons.

Simulations performed to compare the performance of
this test versus the analogue one under a frequentist view,
with its corresponding Bonferroni correction, suggest that the
Type I error is small and quite stable for the Bayesian test, in
contrast with the instability of the figures for the standard
frequentist test. The conservative nature of both tests is also
shown to increase with the number of loci analysed, to
prevent a large number of false positives when a dense
genome scan is performed.

Another test that seems to overcome the problems of
population structure in case-control sampling schemes is the
recently presented by Pritchard et al. [41]. They make
effective use of previous methods to detect the presence of
population structure in the population [42] and to
differentiate the distinct subgroups, calculating the degree of
belonging of any individual to each subpopulation [43]. First,
substructure is tested by looking for association among a set
of unlinked loci distributed throughout different
chromosomes [42]. Then, if association is detected, it must
be due to population structure, since the loci are chosen to be
independent. Next, that structure is analysed with the method
of Pritchard et al. [43]. They use MCMC procedures to
estimate the number of subpopulations, the allele frequencies
in each subpopulation and the value for each individual of
the vector q = (q1,...,qK), where K is the inferred number of
populations and qi, i = 1, ..., K, is the proportion of the
individual’s genome originated in subpopulation i.

Once the subpopulations have been determined, their
method [41] is designed to test the null hypothesis of no
association between alleles at a certain candidate loci and the
phenotype of the trait within each subpopulation, instead of
testing the presence of association in the whole population,
as it is usually done. Furthermore, as a consequence of their
procedure, since each subpopulation is assumed to be free of
structures interfering with the marker-phenotype
relationships, any association, if detected, would be likely
due to physical proximity between the marker and the
disease locus, i.e., to linkage disequilibrium.

Their procedure, named STRAT (STRuctured population
Association Test), uses a likelihood ratio to test H0 ≡
subpopulation allele frequencies at the candidate locus are
independent of phenotype vs. H1 ≡ subpopulation allele
frequencies at the candidate locus depend of phenotype. The
usual statistic, is employed, where       and   are the

estimates of P0and P1, the population allele frequencies at the
candidate locus under H0 and H1, and Q, the collection of
vectors q representing the genetic backgrounds of the sample
individuals, and C is the list of sample genotypes at the
candidate locus. The probabilities of an individual bearing a
certain allele are calculated as a weighted sum across the
putative subpopulations of the frequencies of that allele in
each subpopulations, weighted by the vector of genetic
backgrounds of the individual. For example, under H1, the
probability of individual i, with phenotype Φ(i), of having
allele j in its genotype would be:

being c(i,a) the element of C corresponding to the ath allele of
i, Φ the vector of phenotypes for the individuals
(Φ(i)∈{0,1}),   the proportion of genetic information of i
coming from the kth subpopulation, and         the frequency of
allele j at the candidate locus in subpopulation k among
individuals with phenotype Φ(i) –under H0, the frequencies
are independent of the phenotype, so they would be denoted
just as pkj.

The significance of the obtained value for Λ is then
approximated by a Monte Carlo simulation, in which a large
number of values for C are generated under the probability
model for the null hypothesis. The approximation is thus
given by the proportion of times that the value of Λ for the
generated Cs is higher than the observed one.

Simulation studies showed that the method performed
reasonably well in different structure situations, varying from
two discrete, distinct populations with the same allele
associated in both of them at equal frequencies, to two
admixed populations with different alleles associated in each
of them at different frequencies. They indicate that in general
the adjustment of the test to the theoretical significance level
is fairly good, although sometimes slightly conservative. In
any case it outperforms the classical χ2 test, while obtaining
similar results to those of the TDT. With respect to the
power, the behaviour is notably better in “confusing”
situations, i.e., those different from having the same allele
associated with the same risk of disease in all the
subpopulations, losing power with respect to the TDT in the
latter case, but outperforming it by far when different alleles
are associated in each subpopulation.

The STRAT method presents therefore several
advantages in performing association mapping in structured
populations. Since it does not pool the genetic information
from the subpopulations, as others like the TDT do, but treats
each one separately, it allows for different effects in different
subpopulations. The fact that the data are collected from a
case-control scheme and the non-necessity of devising
complex ascertainment sampling schemes to take
substructure into account are also good features of this
method. However, the requirement for a large number of
independent loci to test the presence of substructures and
analyse them –heuristic approximations suggest more than
100 microsatellite loci, or an even larger number of biallelic
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loci [41]– could make it unaffordable, due to genotyping
costs in certain contexts, especially when only one or a few
candidate marker loci are going to be tested. On the other
hand, if there is a whole screen in which many markers are
tested for association (SNPs, for example), those markers
themselves can be used to detect and study the possible
substructures. The novelty of the method leaves still some
directions to explore, such as extending the procedure to
analyse family structured samples, incorporate correlations
between the ancestry of linked markers within individuals
–which should improve the method [41]–, modelling the
relative risks when the candidate locus is not the functional
site itself, or studying in depth the errors consequence of the
many simulation procedures involved.

Perhaps one of the most originals approaches, and
apparently also a good one for fine mapping, is that of
Lazzeroni [44]. It is based on the linkage disequilibrium
measure δ, defined as

δ = 
( ) ( )

( ))|1

)||

NAP

NAPDAP

−
−

.

Since it ignores confounding factors like population
admixture, it was devised to be used to fine-scale map a
disease for which linkage has been established to a group of
markers in a certain area. After some approximations based
upon Taylor series expansions, the parameter δ can be finally
approximated by a polynomial on the physical location of the
marker locus, x, as

where J is the order of the Taylor expansions, µ is the
location of the mutation site, and β0 and βij, i = 1,2, j =1,...J,
are the coefficients of the polinomial.

The method can then be applied in steps: first, the
parameter δi is estimated for each locus i = 1,...,R. The
estimates have to be transformed to avoid skewness and
make possible a normality assumption. Bootstrap procedures
are then used to account for variability and estimate the
variance-covariance matrix, and finally a generalised least
squares (GLE) approach is used to fit the disequilibrium
curve to the observed data and get an estimation of the
location of the gene.

When tested with the CF data of Kerem et al. [29], the
method placed the causative mutation at approximately 10 kb
from its true location. In addition, all 80, 90 and 95%
confidence intervals included the true location. This
approach seems therefore to provide good results, but no
further investigation has been made with other examples. It
is also an interesting feature that it can be applied as well to
family data, by adjusting the bootstrap scheme, although no
comparative results have yet been produced. Further

investigation should pay attention to multiallelic loci
extensions, disease mutation at multiple sites and efficient
algorithms to perform the whole process and be able to
obtain empirical confidence intervals by replicating the
estimation procedure, instead of recurring, as it was done, to
somewhat inaccurate likelihood estimations.

The Problem of Population Choice

It has been agreed that in many if not all cases,
populations do not match the optimal desirable conditions to
perform a linkage disequilibrium study. Wright et al. [45]
proposed up to five different ideal kinds of populations to
more accomplish this, but concluded, as did Sheffield et al .
[46], that genetically simplified isolates are more likely to
properly host these studies than diverse continental ones
under most assumptions. The Ashkenazi Jews [34,47], the
Sardinians [48], some Taiwanese populations [49], or the
Costa Ricans [27] are examples of populations used in the
literature due to their isolation and historical background.
But likely the most studied and quoted as a paradigmatic
example of an isolated population is the Finnish (see for
instance [22,25, 34,50-52]). However, recent studies seem to
contradict the claim that population isolates are always the
most optimal. Eaves et al. [53] provide data that genetic
isolates like Finland and Sardinia will not prove significantly
more valuable than general populations for linkage
disequilibrium mapping of common variants underlying
complex disease.

Instead of looking for alternatives to circumvent the
problem of population structure, some have tried to take
advantage of it. Briscoe et al. [20] showed how to detect
association by means of admixed populations, and Laan and
Pääbo [54] and Terwilliger et al. [55] used genetic drift gene-
rated linkage disequilibrium for gene mapping purposes.

DETECTION OF DISEQUILIBRIUM WITH FAMILY
SAMPLES

The Use of Family Structures in Associ-ation Mapping
and the Transmission/Disequili-brium Test (TDT)

It was not until recently that population-level procedures
have more or less developed methods to solve the problem of
population artifacts such as admixture or stratification, to
avoid their influence in the analyses. We have seen how
isolated populations seem to offer a possible solution, as well
as how to use those effects to create a disequilibrium which
can be subsequently used to map genes of interest. An
alternative feasible solution to the problem of obtaining cases
and controls free of the influence of the population structure
was to get them, not from the whole population, but from
within individual families. This solution is the one which has
received most attention in the last several years. The most
significant “early” tests were the AFBAC, which stands for
Affected Family Based Controls [56,57], and Falk and
Rubinstein’s Haplotype Relative Risk (HRR) [58,59].

In the AFBAC test, for a given marker and a family, the
four parental marker alleles are assigned to one of two
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categories: transmitted to at least one affected offspring and
not transmitted to any affected offspring. Then a standard χ2

test is performed to look for association between the marker
and disease locus. The HRR considers a sample of n single-
child families, with the child in each family being affected.
Of the 4n parental alleles at the marker locus, 2n will be
transmitted to the child and 2n will not. The counts of the
transmitted are compared to those of the non-transmitted
through a χ2 statistic.

Spielman et al. [39] argued that the HRR test is only
valid as a test for association, and not as a test for association
and linkage, this is, linkage disequilibrium, as it would be
most desirable. In their paper, Spielman et al., departing
from the HRR, and using some previous theoretical results
about it [59], proposed a method which they called
Transmission/Disequilibrium Test (TDT), which, with
different adaptations and improvements has been thoroughly
studied since then. One of the main features of the test is that
it can be valid both as a test of linkage and as a test of
association. The data come again from nuclear families with
one affected child and it is devised to be used with diallelic
loci, though they extended it to more than one affected child
per family and gave indications on how to proceed with
multiallelic loci.

In its basic form, the TDT considers n nuclear families,
each of whose children is affected. The data from the 2n
parents are displayed as in (Table 6).

Table 6. Transmitted Vs. Nontransmitted Alleles Table for
TDT Analysis

Nontransmitted allele

Transmitted allele M1 M2 Total

M1 a b a+b

M2 c d c+d

Total a+c b+d 2n

To allow the test to be valid both as a test of linkage and
association, it is necessary to use only data from
heterozygous parents, since the values to compare are those
of b and c. The statistic to use is then,

which under the null hypothesis follows a Chi-square
distribution, and it tests whether there is or not linkage
between the marker loci and the disease, but it is valid only
when D, the disequilibrium rate, is greater than zero.
Therefore, although it takes advantage of the existence of
association and adopts some features like comparing allele
frequencies, more proper of association studies, it has been
argued that its normal use should be to detect linkage

whenever an association has been found [39,60], although
this should not be interpreted in general as meaning tight
linkage [61].

A very important feature of the TDT is that it remains
valid as a test of linkage under the presence of association
even when population structure exists. Its analytical
properties and performance were tested under some
population admixture models, and these effects do not alter
the TDT’s properties to detect linkage and association [60].
Simulations showed that the TDT retained the nominal
probability of type I error, while the contingency statistic
associated to HRR and AFBAC data exceeded it –the higher
the gametic disequilibrium created, the wider the gap
between empirical and nominal probability–, which means
that these tests provide a falsely high significance of the
results, since they allow more false positives than they
should. For complex diseases, the TDT seems also more
powerful than heterogeneity tests involving healthy siblings,
since –not as otherwise could be thought– there is no
expected distortion in the transmission to nonaffected
siblings [62]. However, when multiple sib families are used,
the TDT loses its utility to look for association [63]. The
reason is that under the hypothesis of no linkage, the
transmission of marker-disease haplotypes from the
heterozygous parents to their offspring is independent from
one sib to another, whereas this is not so just under the
hypothesis of no association.

The TDT has been extended to the case of multiallelic
markers by several authors. Spielman and Ewens themselves
[64] proposed a natural extension consisting in comparing
for a given marker allele Mi, the number of times that it is
transmitted to the affected offspring, ni·, with n·i, the number
of times that it is not. For a k-allelic marker, the result is a
statistic,

which, according to Spielman and Ewens, approximately
follows a        under the null hypothesis. Sham [65] notes that
this statistic follows asymptotically a      distribution only
under rather restrictive conditions -namely, the equality of
the frequencies of all parental heterozygous genotypes.
Martin et al. [63] also criticise the chi-square validity of the
test for testing the hypothesis of no association or the one of
no association or no linkage when there are multiple affected
children in the sibships. They propose two statistics which
allow testing for linkage disequilibrium and use all the
affected children. Using only heterozygous parents, for two
affected siblings and a biallelic marker, they define s11 as the
number of transmissions of the first allele from the
heterozygous parents to both affected children, s12 as the
number of transmissions of the first allele to only one of the
children and s22 as the number of transmissions of the second
allele to both of them. Letting h = s11 + s12 + s22 and h*= s11 +
s22, then they define the statistic Tsp as Tsp = (h/2h)Tmhet, and
letting
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then they define the statistic Tsu = T*
mhet /2. In the case of a

biallelic marker, both tests are the same, but differences arise
when multiallelic markers are considered. However, both
statistics follow, for a m-allele marker and two affected
siblings per nuclear family, a X

2

m -1 distribution. They show
how to extend the statistics to nuclear families with more
than two affected children, to sets of families with different
numbers of children, and to multiallelic markers. They also
provide Monte Carlo methods for power computations.
When tested by simulation under different disease models,
both tests are approximately equivalent, unless the sample
size is smaller than 100 families and then Tsp is slightly more
powerful. When comparing Tsp with Tmhet (taking for the
latter one sibling at random from the affected sibs to assure
the validity of the test as a test of association), the former
was uniformly more powerful, except for the recessive
model, in which both tests performed almost identically.

Previously, Sham and Curtis [66] had already
implemented a multiallelic extension of the TDT, based on
the notion that each marker allele is associated to a different
extent with the disease. They modelled the likelihood under a
logistic regression framework and obtained good results in
terms of power for strong LD and recessive diseases. Based
on numerical results, Spielman and Ewens [64] claim that the
use of their extended TDT statistic is asymptotically
equivalent to that in [66] as well as to other approaches such
as Harley et al.’s [67] and Duffy’s [68]. Kaplan et al. [69]
proposed the application of Monte-Carlo simulation to some
of these tests in order to avoid using asymptotic
approximations which had been questioned elsewhere
[66,70]. Power calculations were performed to compare the
performance of the different tests, with different results with
respect to the type of population and genetic model assumed.
This way of proceeding, however, was questioned by Sham
[65] in favour of the chi-square approach of his
aforementioned statistic. When the available data is sparse,
the use of Monte Carlo methods for the estimation of p-
values become necessary, since the use of the χ2 distribution
is only valid when the number of informative –heterozygous-
parents under study is large [71].

One of the biggest problems of the TDT-like statistics is
that they require information on parental genotypes, which in
some occasions is not always available. A clear example are
the late onset diseases, for which at the time of detection in
the offspring, no genotype information can be obtained from
the parents, since they are for the most part deceased. For
this reason, a number of efforts have been directed towards
the development of tests not involving the parental
generation to assess information about transmissions. Most
of these use unaffected siblings. Let us review some of them.

Curtis [72] proposed a statistic to test the null hypothesis
of no association or no linkage (i.e., to detect the existence of
linkage disequilibrium) in minimal configuration sibship
samples, that is, those with one only affected sib and one
only unaffected sib. When several sibs are available, he

suggested choosing at random one affected and take that
unaffected bearing a maximally different genotype to that of
the affected sib. His statistic is based on the values of Tij, for
i ≠ j, defined as follows: each allele of the affected sib is
compared with each of the unaffected one. If they are
different, 1/2 is added to the value of Tij, where i is the
affected sib’s marker allele and j the unaffected one’s, while
if they are equal, the comparison is ignored. When the
marker is biallelic, the statistic used is

which is asymptotically N(0,1), where Ni is the number of
sibships causing an increase of i in the total count of T12 and
T21 together.

Boehnke and Langefeld [73] recommend the use of the
Discordance Allele Test (DAT), in which the structure
studied is that of minimal configuration sibships too, with the
addition that only those sibships in which sibs have different
genotypes are taken into account. The comparison of both
genotypes is used to build A 2×m table: if the four alleles are
all different, then +1 is added to each of the four
corresponding cells, while if both sibs share one allele, only
the two different alleles are counted in the table. Denoting by
nij the total number of observations for affection status i and
allele j, the usual chi-square statistic for contingency tables is
used:

Due to the correlation between the sibs genotypes,
Monte-Carlo approximations applied to a permutation
procedure must be employed to estimate the p-value of the
test (see [74] for a detailed description of this procedure).

The Sib-TDT (S-TDT) was introduced by Spielman and
Ewens [75]. For each marker allele i a random variable Yi is
defined as the number of i alleles present in the affected
individuals in all sibships. The aforementioned permutation
procedure is used here to calculate, for each sibship k the
mean value Aik and variance Vik of the contribution of that
family to Yi, to be utterly able to define the normalised
statistic

where Ns is the number of sibships. For biallelic markers Z1

would be the statistic to use, and the p-value would be

Tmhet =
(s11 - s22)*

2
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obtained, either from the Monte-Carlo permutation procedure
if the sample is small, either from normal approximations for
large samples. For multiallelic markers, the statistic

i
mi

max ZmaxZ
,...1=

=

should be applied, and its p-value approximated by the
Monte-Carlo permutation approach. When compared to the
original formulation of the TDT, the S-TDT requires
considerably more genotyping than the TDT to achieve
similar power [76], but it has, as the rest of these sibship-
based statistics, the obvious advantage of not needing
information from the parents. A modification was introduced
to this statistic by Monks et al. [74] in order to be able to
make asymptotic approximations. They proposed the TMSTDT

statistic, defined as

Its distribution under the null hypothesis of no linkage as
well as under the one of no linkage or no association
approximately follows a X

2

m  -1. They compared by simulation
the performance of the four tests, and concluded that Curtis’
is uniformly less powerful than the rest, DAT and TMSTDT are
very close one to each other in all the models simulated and
the S-TDT is more powerful than those two depending on the
nature of the association between marker and disease.

Horvath and Laird [77] also developed a sibship-based
test, the sibship disequilibrium test (SDT). For a biallelic
marker, with alleles 1 and 2, differences between the mean
number of 1 alleles among the affected and unaffected sibs
are measured for each sibship. If b denotes the number of
times that these differences are greater than zero and c the
number that they are less than zero, then the statistic

( )
cb

cb
T

+
−=

2

is computed. Under the null hypothesis of no linkage or no
association it follows a X1

2 
distribution, which allows exact

computation of p-values. For multiallelic markers, they
extend the test by a multivariate one. In particular, for a
marker with m alleles, the quantities di

j
 are defined as the

differences between the mean number of j alleles among
affected and unaffected sibs of sibship i, where j=1,...m and
i=1,...,N, being N the numbe r of s ibships . For e a ch j, w he re
j= 1,...m -1, let and S’= (S1,..,Sm-1)’, where sign(·) takes the

values –1, 0 or 1. Defining the matrix W as for j,k=1,...m-1,
then the statistic to use is T = S’W1 S, which, under the null

hypothesis follows asymptotically a X
2

m -1 distribution. They
also consider discordant sib pair data to define a class of
discordant-sib-pair tests. In the biallelic marker case, for
each sib pair two numbers are measured: (i, j), the number of
1 alleles in the affected and unaffected sib, respectively. In
the biallelic situation, i and j take the values 0, 1 and 2. Let
b2 the number of (2,0) pairs, c2 the number of (0,2), b1 the
number of (2,1) or (1,0) and c1 the number of (1,2) or (0,1).
Then, the class of statistics Tx, for x > 0, is defined as

( )
( )22

2
11

2211

cbxcb

cbxcb
Tx

−+−

−+−= ,

which, under the hypothesis of no linkage or no association,
follows asymptotically a N(0,1) distribution. Tx generalises
both SDT and Curtis’ test, since T1 is equivalent to SDT and
T2 is equivalent to Curtis’ test [77]. When comparing SDT
and Curtis’ and S-TDT in the case of sib pairs -these two
tests are equivalent in this case [77]-, the differences in
power were small. When testing for disequilibrium if linkage
is established, S-TDT is slightly more powerful than SDT,
but when testing for linkage none is uniformly more
powerful than the other [77].

Other TDT extensions were made to allow the
information from larger pedigrees containing several nuclear
families (which would be otherwise rejected from the study)
by Martin et al. [78] or to allow gene-gene or gene-
enviroment interactions [79]. Particularizations to the X
chromosome were also performed [81].

GENOMIC SCREENS

As mentioned above, an important goal of a gene
positioning study by linkage disequilibrium is to narrow the
area in the chromosome to which a gene has been shown to
be linked. This task first requires that a linkage analysis
based genome screen has been accomplished.

However, due to the growing availability of densely
genome-wide distributed molecular markers such as SNPs
(see for instance [81]), the possibility of applying association
studies to genome screens has lately been suggested [14, 82].
Since then, most of the investigation has been related to
theoretical aspects, such as the convenience of one or another
type of markers, their optimal density throughout the genome
or the sample sizes necessary to obtain good power with the
different statistics. Nevertheless, some practical applications
have been published. For example, in [27] a whole
chromosome was screened for bipolar mood disorder (BP-I),
and in [21] a 2702 cM linkage disequilibrium map was
generated in cattle.

Two questions have to be addressed in order to perform a
successful study: an appropriate marker map density and the
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possible need, depending on the method, for a correction for
a high number of false positives due to the multiple
comparisons that have to be made. Kruglyak [83] concluded
that in a general population, useful levels of LD would not
extend beyond an average distance of 3 kb, and a battery of
approximately 500,000 SNPs would be necessary for whole-
genome screening purposes. Durham and Feingold [84] dealt
extensively with IBD probabilities in order to correct for
false-positive rates in a method involving features of
affected-pair analysis, a way of detecting linkage, and of
linkage disequilibrium studies.

Since it appeared, the TDT has generated a considerable
amount of literature. As expectable, its properties for
scanning large portions of genome have been widely
investigated. Risch and Merikangas [14] proposed it as an
alternative in genome screens to the traditional allele sharing
in affected sib pairs (ASP) tests to detect genes of small or
moderate effect. Their analysis was performed under
different penetrance situations for a multiplicative
inheritance model of the disease, assuming, for the sake of
simplification, a strong linkage between marker and disease,
with recombination fraction equalling zero. The number of
family units necessary to achieve an 80% power was
compared in a linkage study vs. an association study
performed with the TDT, with five biallelic markers in each
of the 100000 genes assumed known to compose the whole
genome and the same whole significance levels of α=0.05. In
general the performance of the TDT was better than linkage
by ASP for genes of this level of effect. Several objections
were made to Risch and Merikangas study [23,24,85,86],
regarding questions such as the usefulness and convenience
of classic linkage analyses, the use of populational-level
sampling schemes instead of family-level ones or what
happens when the situation is not as optimal as having one of
the markers alleles being the causative one itself. Each of
these topics was subsequently discussed by Risch and
Merikangas themselves [87].

The study of Risch and Merikangas [14] was broadened
by considering other inheritance models [15], with similar
results, in the sense of the TDT being superior to ASP tests.
Pajukanta et al. [52] note that the lack of validity of the
assumption of independence of parental transmissions for
certain models. In response, Camp [88] states that the
assumption of independence is not as decisive as it first
seems. Knapp [89] derives, under the same models as in [15],
two different approximations for the power of the TDT based
on standard stochastic convergence theory. While one of
them leads under the multiplicative model to the same results
as in [14], the other seems much more precise, since the
estimates of the real power obtained by simulation agree
much better with the proposed 80%.

Another point of interest is the kind and density of the
markers used for the screen. A different approach to those
mentioned above was proposed by Chapman and Wijsman
[90] to compare the sample sizes necessary to achieve an
80% power for biallelic and multiallelic markers in a case
control context. With several assumptions –punctual
introduction of the mutation, nonoverlapping generations,
random sampling, no migration, genetic drift or mutations in
the marker nor in the disease loci, and constant global

frequencies for marker and disease loci alleles- they varied
the number of generations since the introduction of the
disease mutation, the markers spacing and the mode of
inheritance of the disease. As expected, since the information
provided by a multiallelic marker is higher than that of a
biallelic one, the sample size required by a multiallelic
marker analysis is much lower than that necessary to perform
a biallelic marker analysis, all the rest of variables being
equal. Equivalently, the density of the map to achieve a
given power with a given significance level and sample size
is much higher for biallelic than for multiallelic loci.

ASSOCIATION AND QTLS

Although association analyses have focused more study
and attention in their application to mapping binary traits,
especially simple inheritance diseases, their application to
Quantitative Trait Loci (QTL) detection has also been
studied, suggesting that they can usefully be applied to this
problem as well. As in the binary case, there are two global
strategies to approach the problem: population-level analyses
or family-level studies, usually performed with family trios.
Again, extensions to sibship-based tests have been made, as
well as to other procedures such as the use of variance
component models.

One of the first tests was proposed by Boerwinkle et al .
[91,92]. The so called Measured-Genotype test, its two
alternative forms, based on alleles (MGA test) and in
genotypes (MGG test), use the measures of genotypes and
phenotypes of unrelated individuals to classify them into
either two (MGA) or three (MGG) groups, according to the
alleles or the genotypes they bear. Then an analysis of
variance (ANOVA) analysis is performed to test for
significative differences between the groups.

When dealing with quantitative traits there is a wider set
of options to devise a study of this kind. When facing the
costs of the analysis, one of the most important decisions is
to genotype every individual for which there is a phenotypic
record, or restrict the analysis to those showing extreme
values in the phenotypes distribution. With the latter idea in
mind, Page and Amos [93] proposed two tests based on the
MGA and MGG, the TMA and TMG, where the T stands for
“truncated”, in which the procedures are identical to those
mentioned above, except that the individuals genotyped
come from the extremes of the phenotypic distribution.

Luo et al. [94] developed a population genetics model for
the distribution of linkage disequilibrium between a
polymorphic marker and a QTL. This model was applied by
Luo [95] to devise a procedure to detect LD using principles
of analysis of variance based upon asymptotic variance
results using the Expectation-Maximization (EM) algorithm
by Kao and Zeng [96]. Luo and Suhai [97] finally introduced
a maximum likelihood method not only to detect LD, but to
allow the estimation of the amount of disequilibrium
between the marker locus and the QTL out of a random
sample from the population. The complexity of the model
avoids an analytic solution to the likelihood equations, so
their previous studies of EM estimation are applied to
estimate the parameters involved in the equation. They
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conclude that a sample size of at least 500 individuals and a
QTL explaining at least one quarter of the phenotypic
variance of the trait are necessary to provide good
estimations. The application of extreme, also called selective,
genotyping is also considered, although it would be useful
only in the detection step, but not in the estimation one, since
the final sample would not be a random one.

In the same way that occurs with discrete traits,
population artifacts such as stratification or admixture can
mask the detection of a QTL when population samples are
used. With the precedent of the TDT in binary traits, Allison
[98] presented a collection of TDT extensions for
quantitative traits, termed TDTQ1 to TDTQ5. They take the
form, respectively, of a t-test of comparison of means, a chi-
square test with selective genotyping, a t-test with selective
genotyping, a normal statistic to test for deviations in the
probability of transmission of the favourable allele in the
extreme tails of the phenotypic distribution and a F-ratio test
to compare the regressions of the phenotypic value over one
model without allelic transmission information and the same
one with the addition of variables related to transmission
counts. Using simulations, he concluded that by selecting
20% of the extreme phenotypes it is possible to detect, at a α
= 0.0001 level, with 80% power, QTLs with a 5% effect with
less than 300 observations -trios- [98], and that TDTQ5

performs better in general than the rest. When compared
under different situations TDTQ1 to TDTQ4, TMG, TMA,
MGG, MGA and a standard case control test, Page and
Amos found TMA to be in general the most powerful of the
group, although the Q-TDTs proved much more efficient in
situations of the presence of population events [93], quite in
agreement with [99]. Rabinowitz [100] also extended the
TDT to quantitative traits, maintaining the analysis unit of
two parents and only one child.

A logical extension, as in the binary case, was to use
information from sibship structures to avoid the problems
derived from the eventual lack of data from parental
generations. Allison et al. [101] proposed two tests, using
minimal configuration sibships -i.e., two, and only two, sibs,
with different genotype and phenotype-, with the possibility
of using multiallelic markers. While the first procedure
applies a mixed effects analysis of variance, with the sibship
as random effect, the marker genotype as fixed and the
phenotypic value as dependent variable, the second is a
permutation test. In it, for each sibship, the difference
between the observed phenotypic mean value of each allele
and the expected one is computed, where the expected value
is obtained by permutation of the different phenotypic values
within each sibship. The statistic thus obtained can be
approximated by a 2

1−mχ , where m is the number of alleles at
the marker locus. Selective sampling, in which the selection
is made based upon Mahalanobis distance computations for
the sibships, seems to considerably increase the power [101].

Fulker et al. [102] combined linkage and association
approaches using sib-pairs for QTL detection. Their
procedure is based on a joint modeling of the mean allelic
values and the covariance structure through a maximum
likelihood approach and a biometrical model. Monks and
Kaplan [103] also take into account covariances. They use
the estimate of the covariance between trait values and

transmission counts from the parents as the basis for their
tests, since these variables should be uncorrelated under the
null hypothesis of absence of association or linkage. With
this approach they developed three tests: one using genotype
information of both parents and all of their children, another
one using genotypes of all the siblings, without parental
information, and a third combining the two former –to ensure
the feasibility of the analysis, only informative sibships are
considered, considering as such, those who allow inferences
about transmission counts from their non-genotyped parents.
Other authors [104,105] have also gone into the study of
variances, by exploiting variance component models. Finally,
other interesting approaches are those of Deng et al. [106],
who extend to the quantitative case the studies of Feder et al.
[107] and Nielsen et al. [108], in which testing for Hardy-
Weinberg equilibrium can be combined with testing for
linkage disequilibrium for QTL mapping purposes, and
George et al. [109], who, in a similar way to that in [101],
proposed a multiple regression procedure, with some
differences with respect to [101], such as the incorporation of
covariates.

CONCLUSIONS

The main objective of this review was to provide a whole
perspective of the many branches being explored in this
recent, but nonetheless old -the concept of gametic
disequilibrium has been known for many decades- field of
investigation. The study of association procedures for gene
mapping purposes has generated in the last several years a
large amount of literature. We hope we have provided an
insight into most of the milestones of linkage disequilibrium
studies: population and family samples, biallelic and
multiallelic markers, analytical and iterative results,
qualitative and quantitative traits, single locus and multilocus
studies. From the most conceptually simple statistics, mere
applications of standard statistical test to this particular case,
we have arrived to some of the most sophisticated and more
up-to-date methods, in which the more they try to model
reality, the more complex they grow.

Although linkage analysis is still in use and new
advances are constantly appearing, we have seen that LD
studies provide a complementary approach. Tests of
association have proved to offer good power for detection
and a high mapping accuracy. Their dependence on
population history and structure, however, suggests that their
use may be restricted to the situations for which they were
devised. Population-based statistics, are in general useful
when population history is known, in particular when dealing
with isolated populations of medium age. Artifacts such as
admixture or stratification can make these kind of studies
lose power and can lead to detection of spurious associations
that lead to no physical proximity at all. Nevertheless, recent
studies have attempted to solve this problems and maintain
the advantages of sampling directly at the population level,
with promising results. When the population is a mixed one
or no ascertainment scheme can be applied in order to
perform a reliable population-level analysis, the alternative
are the family based tests. With the TDT as their most
significant and known member, the possibilities are diverse,
to allow for different configurations and sampling schemes:
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the parents and one child, the parents and several children,
sib pairs, multiple siblings...The discussion is analogous
when quantitative traits are analysed, with the added
complexities, troubles and possibilities derived from the fact
of dealing with a continuous phenotypic set of values. The
advantages of selective genotyping, for instance, are an
ongoing subject of study.

Human and outbred animal or plant populations are
intricate subjects of study. Each population has its own
particularities, so not all the statistics may be suitable for it:
there is no such thing as a perfect test. For this reason, new
methods and improvements, modifications and comparisons
of existing ones are constantly being published.

The speed at which new advances are made in the
molecular field, providing higher density maps of markers
favour as well the use of association studies to locate genes
of interest. As an example, the recent “boom” of the SNP
technology is promising to soon make available the
saturation of candidate gene areas at a low genotyping cost,
due to the ability to of automatize of the genotyping process.
Based on this fact, association approaches devised for their
application on SNP information have been published. The
contribution of the increasing computation power of today’s
computers is also an important factor to take into account,
since it allows the inclusion of enormous volumes of data to
perform complex analyses at a high speed.

To summarise, all these factors taken together make
association and linkage disequilibrium procedures an ever
increasingly important tool for effectively map traits of
interest for advancing genetic knowledge.

ACKNOWLEDGEMENTS

This work was financially supported by the EC DGVI
QLRT-99-30147 project. The authors would like to thank C.
Carleos from Oviedo University and J. Hernandez from
Roslin Institute for their useful comments and bibliografical
support, as well as to the referees for their noteworthy
remarks.

ABREVIATIONS

AFBAC = Affected Family Based Controls

ANOVA = Analysis of Variance

ASP = Affected Sib Pairs

CF = Cystic Fibrosis

DAT = Discordance Allele Test

DTD = Diastrophic Dysplasia

EM = Expectation-Maximization

GLE = Generalized Least Squares

HD = Huntington’s Disease

HRR = Haplotype Relative Risk

IBD = Identity by Descent

LD = Linkage Disequilibrium

LR = Likelihood Ratio

MC = Monte Carlo

MCMC = Markov Chain Monte Carlo

MGA = Measured-Genotype Allele-based test

MGG = Measured-Genotype Genotype-based test

ML = Maximum Likekihood

QTL = Quantitavtive Trait Locus

RFLP = Restricted Fragment Length Polymorphism

SNP = Single Nucleotide Polymorphism

S-TDT = Sib-Transmission/Disequilibrium Test

SDT = Sibship Disequilibrium Test

SNP = Single Nucleotide Polymorphism

STR = Short Tandem Repeat

STRAT = STRuctured population Association Test

TDT = Transmission/Disequilibrium Test

TDTQ1 to = Allison’s Transmission/Disequili-
TDTQ5 brium Tests for Quantitative traits

TMA = Truncated Measured-genotype Allele-based
test

TMG = Truncated Measured-genotype Genotype-
based test
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