A DAY IN FUNCTION SPACES AND INTERPOLATION THEORY

Wednesday, September 17, 2014

Organized by F. Cobos and L.M. Fernández-Cabrera

Supported in part by MTM2010-15814 $\,$

Departamento de Analisis Matemático Universidad Complutense de Madrid

Seminario 222

Global solutions of Navier-Stokes equations for large initial data belonging to distinguished function spaces

Hans Triebel

University of Jena (Germany)

The classical Navier-Stokes equations in \mathbb{R}^n , $n \ge 2$, can be reformulated as

$$\partial_t u - \Delta u + \mathbb{P} \operatorname{div} (u \otimes u) = 0 \qquad \text{in } \mathbb{R}^n \times (0, \infty),$$
$$u(\cdot, 0) = u_0 \qquad \text{in } \mathbb{R}^n,$$

where $u(x,t) = (u^1(x,t), \ldots, u^n(x,t))$ is the unknown velocity, $\partial_t = \partial/\partial t$, $\partial_j = \partial/\partial x_j$ with $j = 1, \ldots, n$ and

div
$$(u \otimes u)^k = \sum_{j=1}^n \partial_j (u^j u^k).$$
 $k = 1, \dots, n.$

 $\mathbb P$ is the Leray projector,

$$(\mathbb{P}f)^k = f^k + R_k \sum_{j=1}^n R_j f^j, \qquad k = 1, \dots, n,$$

based on the (scalar) Riesz transforms R_k ,

$$R_k g(x) = \lim_{\varepsilon \downarrow 0} \int_{|y| \ge \varepsilon} \frac{y_k}{|y|^{n+1}} g(x-y) \, \mathrm{d}y, \quad x \in \mathbb{R}^n.$$

We ask for solutions u(x,t) global in time in (vector-valued) spaces $u(\cdot,t) \in A_{p,q}^{s}(\mathbb{R}^{n})_{n}$ of Besov-Sobolev type for suitably given initial data $u_{0} \in A_{p,q}^{\sigma}(\mathbb{R}^{n})_{n}, \sigma < s$. We are mainly interested in the interplay between multiplication algebras for $A_{p,q}^{s}(\mathbb{R}^{n})$, Haar expansions for $A_{p,q}^{\sigma}(\mathbb{R}^{n})$ and representations of some homogeneous spaces $\dot{A}_{p,q}^{\sigma}(\mathbb{R}^{n})$ in terms of heat kernels.

11:00 - 11:50

Characterizations of Periodic Besov Spaces of Measurable Functions

Hans-Jürgen Schmeisser

University of Jena (Germany)

The classical approach to periodic Besov spaces $B_{p,q}^s(\mathbb{T}^d)$ based on differences (moduli of continuity) has been extended to the case $0 , <math>0 < q \leq \infty$, and s > 0. If $s > d(\frac{1}{p} - 1)$ then these function spaces can be considered as subspaces in $D'(\mathbb{T}^d)$, the space of periodic distributions, and various equivalent characterizations are well-known.

In this talk we focus on the case $0 < s \leq d(\frac{1}{p} - 1)$. It is our aim to present equivalent characterizations based on

- polynomial \mathcal{K} -functionals
- general moduli of smoothness

and

- constructive approximation methods.

This is joint work with K. Runovski (Sevastopol).

12:00 - 12:50

Embeddings of weighted spaces of Besov and Morrey type

Dorothee D. Haroske

University of Jena (Germany)

We study embeddings of weighted spaces of Morrey type, $\mathcal{M}_{u,p}$, $0 , and spaces of Besov-Morrey type, <math>\mathcal{N}_{u,p,q}^s$ and $B_{p,q}^{s,\tau}$, $s \in \mathbb{R}$, $\tau \geq 0$, $0 < q \leq \infty$, all defined on \mathbb{R}^n . Mainly we consider weights from the Muckenhoupt class \mathcal{A}_{∞} , with $w_{\alpha}(x) = |x|^{\alpha}$, $\alpha > -n$, as typical example, and obtain necessary and sufficient conditions for such an embedding. This is joint work with Leszek Skrzypczak (Poznań), Wen Yuan (Beijing) and Dachun Yang (Beijing).

15:30 - 16:20

Compact embeddings of weighted Sobolev spaces

Therese Mieth

University of Jena (Germany)

Let B be the unit ball in \mathbb{R}^n and ψ be a continuous, slowly varying function on (0, 1] with $\psi(1) = 1$ and bounded from below.

We define the weighted Sobolev space $E_{p,\psi}^m(B)$, $1 \leq p < \infty, m \in \mathbb{N}$, as the completion of $C_0^m(B) = \{f \in C^m(B) : \text{supp } f \text{ compact}\}$ in the norm

$$||f||E_{p,\psi}^{m}(B)|| := \left(\int_{B} |x|^{mp} \psi^{p}(|x|) \sum_{|\alpha|=m} |\mathbf{D}^{\alpha}f(x)|^{p} \mathrm{d}x\right)^{1/p}$$

Then the continuous embedding

$$\mathrm{id}: E^m_{p,\psi}(B) \hookrightarrow L_p(B)$$

is compact if, and only if, $\lim_{t\to 0} \psi(t) = \infty$. We investigate the influence of the growth rate of ψ on the compactness of the embedding, measured in terms of entropy and approximation numbers.

16:30 - 17:20

Compact operators interpolated under logarithmic methods

Fernando Cobos

Universidad Complutense de Madrid

In 1960 Krasnosel'skii proved a reinforced version of the Riesz-Thorin theorem, to the effect that, in the usual hypotheses on the exponents and the additional assumption $q_0 < \infty$, if T is a linear operator such that $T: L_{p_0} \longrightarrow L_{q_0}$ compactly and $T: L_{p_1} \longrightarrow L_{q_1}$ boundedly, then $T: L_p \longrightarrow L_q$ is also compact.

Very recently Edmunds and Opic have established a limiting variant of Krasnosel'skii theorem for finite measure spaces showing that compactness of T is preserved when T acts between Lorentz-Zygmund spaces which are very close to L_{p_0} and L_{q_0} .

In this talk we show abstract versions for Banach couples of the results of Edmunds and Opic. The talk is based on results of joint papers with L.M. Fernández-Cabrera and A. Martínez and with A. Segurado.

17:30 - 18:20

Problem session