III.2. METODO CIENTIFICO

Prof. D. José Luis Pacheco del Cerro

METODO CIENTIFICO

DIPLOMATURA DE PODOLOGIA

El Método Científico es una asignatura optativa de segundo curso de la Diplomatura de Podología. Consta de tres créditos, dos teóricos y uno práctico. Pretende enseñar a los futuros podólogos cuál es el fundamento y el proceso de investigación científica; su génesis, planteamiento, características y pautas de actuación. Consta de seis temas

PROGRAMA Y CRONOGRAMA DE LA ASIGNATURA

TEMA 1	El planteamiento científico 4 horas.
TEMA 2	Los problemas científicos 2 horas.
TEMA 3	La investigación teorética I:
TEMA 4 -	hipótesis 4 horas.
1EMA 4	La investigación teorética II:
TEMA 5	Leyes y Teorías 3 horas. La investigación empírica:
TEMA 6	experimentación y observación 3 horas. Causalidad

OBJETIVOS

Los objetivos educativos planteados para esta ASIGNATURA son los siguientes:

1.- Reconocer el Método Científico como estrategia general de la Ciencia, y la existencia de técnicas particulares de cada rama científica.

- 2.- Conocer lo pasos fundamentales del Método científico, y saber enunciarlos en un proceso de investigación dado.
- 3.- Reconocer una hipótesis científica, sea cual sea su nivel o complejidad.
- 4.- Explicar las bases mediante las que se puede determinar la existencia de relaciones causales en los distintos ámbitos considerados.

CONTENIDOS TEORICO-PRACTICOS

TENA 1: EL PLANTEAMIENTO CIENTIFICO

OBJETIVOS ESPECIFICOS:

- Conocer el concepto de Ciencia, su ámbito de aplicación y sus características principales.
 - Describir los pasos principales del método científico.
 - Analizar y justificar si un problema dado es científico o no.

- Conocimiento ordinario y científico.
- Estrategia general de la ciencia: el método científico.
- Los pasos principales del método científico y sus reglas de aplicación.
 - Técnicas casi universales y técnicas particulares.
 - Ramas de la ciencia: clasificación.
 - Investigación teorética y empírica.

TEMA 2: LOS PROBLEMAS CIENTIFICOS

OBJETIVOS ESPECIFICOS:

- Ser capaz de enunciar problemas científicos.
- Ser capaz de analizar un problema dado, reconocer su tipo y formar problemas unidad.

- Importancia del planteamiento de problemas científicos.
- Clasificación de los problemas científicos en las ciencias formales y en las factuales.
 - Sistemas problemáticos de ordenación parcial.
- El destino de los problemas científicos: resolución, aclaración, olvido.

TEMA 3: LA INVESTIGACION TEORETICA I: HIPOTESIS

OBJETIVOS ESPECIFICOS:

- Ser capaz de reconocer una hipótesis científica, y de establecer el tipo al que pertenece.
- Ante un problema propuesto, ser capaz de formular y fundamentar hipótesis científicas.

- Significados de hipótesis. Parecidos y diferencias con los datos.
 - Tipos de hipótesis. El papel de la lógica.
- Inductivismo versus deductivismo en el desarrollo de hipótesis científicas.
 - Condiciones para la formulación de hipótesis.
- Fundamentación de hipótesis científicas: convalidación teorética y empírica.
 - Contrastabilidad.
 - Función de las hipótesis en la ciencia. Hipótesis "ad hoc".

TENA 4: LA INVESTIGACION TEORETICA II: LEYES Y TEORIAS

OBJETIVOS ESPECIFICOS:

- Ser capaz de definir y reconocer una ley científica.
- Encuadrar una ley científica en el nivel integrativo que le corresponda.
- Saber delimitar las condiciones para la existencia de teorías científicas, y poder diferenciar entre hipótesis, modelos y teorías.

- Concepto de variable en el ámbito del método científico. Clasificación.
- Concepto de ley científica y su relación con las variables fundamentales. Correlaciones. Ejemplos.
- Clasificación de las leyes científicas según niveles integrativos.
 - Teorías científicas: condiciones.
 - Teorías y modelos. Diferencias. Ejemplos.
- Las teorías científicas como estructuras: los programas científicos de Lakatos y los paradigmas de Kuhn.
 - Grandes teorías.

TEMA 5: LA INVESTIGACION EMPIRICA: EXPERIMENTACION Y OBSERVACION

OBJETIVOS ESPECIFICOS:

- Saber distinguir entre observación y experimentación.
- Poder enunciar las características fundamentales de un experimento.
- Poder desarrollar, siguiendo las etapas necesarias, una investigación empírica.

- Los tres niveles de la investigación empírica: observación, medición y experimentación.
 - Experimentos y estudios.
- Características fundamentales de una investigación experimental. Etapas.
- Etapas fundamentales de una investigación empírica observacional.

OBJETIVOS ESPECIFICOS:

- Definir las condiciones para establecer un fenómeno de causalidad observacional clásica.
- Distinguir los modelos causales determinista clásico; determinista modificado de Rothman y multicausal.

- Concepto de causa en distintos ámbitos: sentido común, filosofía, investigación científica.
- Condiciones necesaria, suficientes y necesarias y suficientes. Causalidad en sentido lógico.
- Causalidad científica. relación entre variables. Tipos de asociación entre variables.
- Causalidad en epidemiología. Determinista observacional. Multicausalidad. Modelos de Lilienfeld (multicausal) y Rothman (determinista modificado).

BIBLIOGRAFIA

ABRAMSON, J.H. Métodos de estudio en medicina comunitaria. Madrid: Díaz de Santos, 1990.

BUNGE, M. La investigación científica. Barcelona: Ariel, 1983.

CHALMERS, A.F.; ¿Qué es esa cosa llamada ciencia?. Madrid, Siglo XXI, 102 Ed., 1990.

GALVEZ VARGAS, R.; RODRIGUEZ-CONTRERAS PELAYO, R. Teoría de la causalidad en epidemiología. En: Piédrola, G. y otros: Medicina preventiva y salud pública 8º Edición. Barcelona: Salvat, 1988: 89-96.

GONZALEZ, A. Diseño y cálculo de tests estadísticos para ensayos clínicos y de laboratorio. Capítulo 1: Ciencia. Investigación. Conocimiento. Madrid: Escuela Universitaria de Enfermería. Universidad Complutense, 1989: 17-71.

HEMPEL, C.G. Filosofía de la ciencia natural. Madrid: Alianza,

LILIENFELD, A.M.; LILIENFELD, D.E. Fundamentos de epidemiología. Capítulo 12 A: Hipótesis basadas en relaciones estadísticas. México D.F.: Addison-Wesley Iberoamericana, 1987: 260-265.

POLIT,D.; HUNGLER,B. Investigación científica en ciencias de la salud. México D.F.: Interamericana 3ª Ed., 1991.

ROTHMAN, K.J. Epidemiología moderna. Capítulo 2: Inferencia causal en epidemiología. Madrid: Díaz de Santos, 1987.

WARTOFSKY, M.W. Introducción a la filosofía de la ciencia. Madrid: Alianza Universidad Textos, 1973.