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Abstract. When a binary liquid system is brought into a stationary thermal nonequi-
librium state by the imposition of a temperature gradient, the Soret effect induces
long-range concentration fluctuations even in the absence of any convective instability.
The physical origin of the nonequilibrium concentration fluctuations is elucidated and
it is shown how the intensity of these concentration fluctuations can be derived from
the linearized random Boussinesq equations. Relevant experimental information is also
discussed.

1 Introduction

In this chapter we consider a binary liquid system located between two horizontal
plates with two different but constant temperatures. A temperature gradient in
a liquid mixture induces a concentration gradient through the Soret effect [1–
5]. Many studies reported in the literature have been concerned with the effect
of the Soret-induced concentration gradients on the convective Rayleigh-Bénard
instability [6–11]. However, it turns out that there are also interesting fluctuation
phenomena present, when the liquid mixture is in a hydrodynamically quiescent
stable state, far away from any convective instability. It is the purpose of the
present chapter to review the origin and the nature of concentration fluctuations
in a binary liquid in stable convection-free thermal nonequilibrium states.

About 50 years ago a procedure for dealing with nonequilibrium phenomena
in fluids was proposed by Bogoliubov [12,13]. It was based on a postulate that
a fluid in a nonequilibrium state would proceed to thermodynamic equilibrium
in two distinct stages: first a microscopic kinetic stage with a time scale of the
order of the interval between successive molecular collisions, which for liquids
is of the same order as the duration of the molecular collisions, after which
local equilibrium is established; second a macroscopic stage during which the
fluid evolves in accordance with the hydrodynamic equations. Implicit in this
postulate is the idea that no long-range dynamic correlations would be present
in a fluid of molecules with short-range forces, unless the system would be near
an incipient thermodynamic or hydrodynamic instability.

The subsequent 25 years in the history of nonequilibrium statistical mechan-
ics have revealed a basic flaw in this picture. In evaluating the randomizing
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nature of molecular collisions one must make a distinction between quantities
like mass, momentum and energy that are conserved in a binary collision on the
one hand and nonconserved quantities on the other hand. The fast modes associ-
ated with nonconserved quantities do indeed decay during a short kinetic stage,
but the slow modes associated with the conserved quantities persist well be-
yond the time between successive collisions and a coupling between these modes
can result in long-range (mesoscopic) dynamic correlations [14]. The classical
picture of short-range dynamic correlations first appeared to be inadequate in
fluids near the critical point when experiments [15] could no longer be explained
by the Van Hove theory of the critical slowing down of the fluctuations which
was based on strictly thermodynamic considerations; this observation led to the
development of the mode-coupling theory of critical dynamics [16–19]. Some time
later it turned out that the same mode-coupling theory could also account for
the presence of long-time tails in the Green-Kubo correlation functions that were
originally noticed from computer simulations of molecular dynamics [20–22].

Around 1980 it became evident that the mode-coupling theory would also
predict the existence of long-range temperature and viscous fluctuations in fluids
that are kept in stationary nonequilibrium states [23]. Specifically, Kirkpatrick
et al. were the first to derive the appropriate expressions for the temperature and
the viscous fluctuations in a one-component fluid subjected to a stationary tem-
perature gradient [24]. Subsequently, others have recovered the same expressions
on the basis of Landau’s fluctuating hydrodynamics [25–31]. Physically, the pres-
ence of a temperature gradient ∇T leads to nonequilibrium fluctuations because
the stationary temperature gradient causes a coupling between the component
of the velocity fluctuations parallel to the gradient and the temperature fluc-
tuations. Velocity fluctuations parallel to the gradient are probing regions with
different local equilibrium temperatures, thus causing a nonequilibrium contri-
bution to the temperature fluctuations. Since both the temperature and the vis-
cous (transverse velocity) fluctuations do not propagate, but decay diffusively,
the nonequilibrium contributions cannot depend on whether the temperature
gradient is in the positive or negative direction and, hence, they depend on the
square of the temperature gradient. Moreover, each mode contributes a factor
q−2, so that the intensity of the nonequilibrium fluctuations becomes inversely
proportional to the fourth power of the wave number q of the fluctuations. The
dependence of the intensity of the nonequilibrium fluctuations on (∇T )2 and on
q−4 has been confirmed by light-scattering experiments [32–35]. An algebraic
divergence of the nonequilibrium fluctuations as a function of the wave number
q is now believed to be a general feature of fluctuations in fluids in stationary
nonequilibrium states [14,36,37].

The ultimate divergence of the intensity of nonequilibrium fluctuations for
small wave numbers, i.e., for large wavelengths, will be prevented by gravity and
finite-size effects. Specifically, for very small wave numbers the dependence of
the nonequilibrium fluctuations on q is suppressed by the presence of gravity,
as predicted theoretically by Segrè et al. [38] and confirmed experimentally by
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Vailati and Giglio [39,40], and also modified by finite-size effects, as evaluated
by Ortiz de Zárate et al. [41,42].

In the case of a liquid mixture, a temperature gradient ∇T is accompanied
by a concentration gradient ∇c through the Soret effect as mentioned earlier.
Just as a temperature gradient causes a coupling between the temperature fluc-
tuations with wave vector q perpendicular to the temperature gradient and the
transverse-velocity fluctuations in the direction of the temperature gradient, so
will a concentration gradient cause a coupling between the concentration fluc-
tuations with wave vector q perpendicular to the concentration gradient and
the transverse-velocity fluctuations in the direction of the concentration gradi-
ent. Hence, in a liquid mixture subjected to a temperature gradient not only
nonequilibrium temperature and viscous fluctuations will be present, but also
nonequilibrium concentration fluctuations as first pointed out by Law and Nieu-
woudt [43,44], and as also analyzed by Velasco and Garćıa Coĺın [45] and by Segrè
and Sengers [46]. The intensity of the nonequilibrium concentration fluctuations
should be proportional to the square of the concentration gradient ∇c and again
inversely proportional to the fourth power of the wave number q. At very small q,
the nonequilibrium concentration fluctuations will again be modified by gravity
effects [39,46] and by finite-size effects [47].

The case of nonequilibrium concentration fluctuations in a colloidal sus-
pension in the presence of a concentration gradient has been considered by
Schmitz [48]. Vailati and Giglio [49] have extended the theory to treating the ef-
fect of time-dependent concentration profiles on the structure factor of a binary
liquid.

The complete expressions for the contributions from the nonequilibrium vis-
cous fluctuations, temperature fluctuations and concentration fluctuations to the
dynamic structure factor of binary fluids are rather complicated [43,44,46]. How-
ever, in the case of (nearly) incompressible liquid mixtures a number of simplify-
ing approximations can be made. First of all, as documented elsewhere [34,46,50],
to a good approximation the decay rates of the viscous fluctuations, the temper-
ature fluctuations and the concentration fluctuations can be directly identified
with νq2, Dthq

2, and Dq2, respectively, where ν is the kinematic viscosity, Dth
the thermal diffusivity and D the (mass) diffusion coefficient. Furthermore, the
diffusion coefficient D is much smaller than the kinematic viscosity ν and the
thermal diffusivity Dth. Thus, the viscous and thermal fluctuations have in prac-
tice decayed at the times that the concentration fluctuations are still important.
Moreover, because of the dependence of the refractive index on the concentra-
tion, the intensity of light scattered by the concentration fluctuations is usually
appreciably larger than that from the viscous or the temperature fluctuations.
Hence, in many cases one can readily determine the concentration fluctuations
with Rayleigh scattering independently from the much faster decaying viscous
and temperature fluctuations [34,35,50,51].

In this chapter we shall present a simple derivation of the intensity of the
nonequilibrium concentration fluctuations and their contribution to Rayleigh
scattering. Instead of considering the full (complicated) structure factor [43,46]
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and then make a series of simplifying approximations, we shall show how the in-
tensity of the nonequilibrium concentration fluctuations can be readily derived
from the same linearized random Boussinesq equations commonly used for study-
ing the convective instability in binary fluids [6–11], including the bouyancy term
and, thus, the effects of gravity. Specifically, we shall adopt an approximation
to the Boussinesq equations proposed by Velarde and Schechter to simplify the
study of the linear stability problem [52]. Therefore, instead of using the full
hydrodynamic equations, making a complicated derivation of the structure fac-
tor and, then, simplify it by retaining only the experimentally important terms,
we shall make the simplification a priori, by adopting a set of approximate
Boussinesq equations supplemented with random noise terms in accordance with
fluctuating hydrodynamics [53,54]. The advantage of this approach is that the
calculation of the structure factor associated with the nonequilibrium concen-
tration fluctuations becomes simple and straightforward, while elucidating the
physical origin of the nonequilibrium fluctuations. This simplified approach facil-
itates not only the inclusion of gravity effects to be discussed in this chapter, but
also the incorporation of finite-size effects on the nonequilibrium concentration
fluctuations to be considered in a future publication [47].

2 Theory

We consider a horizontal layer of a binary liquid subjected to a stationary tem-
perature gradient to be designated as ∇T0, which as a result of the Soret effect
is accompanied by a stationary concentration gradient to be designated as ∇c0.
The temperature gradient is assumed to act in the vertical Z-direction, while
being uniform in the X and Y directions. The thermal conductivity is assumed
to vary weakly with temperature so that ∇T0 = dT0/dz and ∇c0 = dc0/dz
are (scalar) constants independent of the position in the liquid layer. The rela-
tionship between the temperature gradient ∇T0 and the resulting concentration
gradient ∇c0 is given by:

∇c0 = −c (1 − c) ST ∇T0, (1)

where c is the (average) concentration expressed as weight fraction (w/w) of
component 1 of the mixture. Equation (1) defines the Soret coefficient ST of
component 1 in component 2. Hence, component 1 is considered the solute and
component 2 the solvent. For isotropic mixtures ST is a scalar quantity and the
induced concentration gradient is parallel to the imposed temperature gradient,
but depending on the sign of ST can have the same or the opposite direction.
When ST is positive, concentration and temperature gradients have opposite di-
rections, with component 1 migrating to the colder region. When ST is negative,
concentration and temperature gradients have the same direction, with compo-
nent 1 migrating to the warmer region. If c were to represent the concentration
of component 2, then (1) would define the Soret coefficient ST of component 2
in component 1. For a given mixture mass conservation implies that when ST of
component 1 in component 2 is positive, the ST of component 2 in component
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1 must be negative and vice versa. In this chapter we adopt the convention that
c designates the concentration of component 1.

Let ρ be the density of the liquid layer, α = −ρ−1 (∂ρ/∂T )c the thermal
expansion coefficient and β = ρ−1 (∂ρ/∂c)T the concentration expansion coef-
ficient. Since the liquid mixture is assumed to be (nearly) incompressible, the
pressure is not a relevant physical variable. We note that β is positive when
component 1 is the heavier component and β is negative when component 1 is
the lighter component. A dimensionless separation ratio ψ may be defined by:

ψ = c (1 − c) ST
β

α
. (2)

The parameter ψ represents the ratio of the density gradient β ∇c0 produced by
the concentration gradient and the density gradient −α ∇T0 produced by the
temperature gradient. Note that, in contrast to ST , the sign of ψ is independent
of whether the lighter or the heavier component is chosen as component 1 of
the mixture, so that it is independent of which component is actually chosen to
represent the concentration c of the mixture.

Finally, the Rayleigh number Ra is defined as:

Ra = −αgL4 ∇T0
νDth

, (3)

where L is the height of the liquid layer and g the gravitational acceleration
constant. Note that the Rayleigh number is negative when ∇T0 = dT0/dz is pos-
itive, i.e., when the temperature gradient is pointing in the positive Z-direction,
opposite to the direction of the gravitational force g.

2.1 Linearized Random Boussinesq Equations for a binary liquid

We want to study small fluctuations around the thermally conducting state,
i.e., fluctuations around the quiescent and stable state of the fluid. Following
a notation adopted by some previous investigators [6,7,55], we denote the local
fluctuation in the temperature T by θ (= δT ), the local fluctuation in the z-
component of the fluid velocity by w (= δuz) and the local fluctuation in the
concentration c of component 1 of the mixture by Γ (= δc). The fluctuations
θ(r, t), w(r, t) and Γ (r, t) depend on the position r(x, y, z) and on the time t.
In the spirit of Landau’s fluctuating hydrodynamics [53], we may describe the
space and time dependence of these fluctuations by the deterministic linearized
random Boussinesq equations for a binary fluid supplemented with random noise
terms [6–8,10]:

∂

∂t

(∇2w
)
= ν ∇2 (∇2w

)
+ g

(
∂2

∂x2
+

∂2

∂y2

)
[α θ − β Γ ] +

+
1
ρ
{∇ × [∇ × (∇ · δT)]}z , (4a)
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∂θ

∂t
= Dth ∇2θ − w ∇T0 − Dth

λT
∇(δQ), (4b)

∂Γ

∂t
= D

[
∇2Γ +

α

β
ψ∇2θ

]
− w ∇c0 + ∇(δJ), (4c)

where λT is the thermal conductivity of the mixture. The notations ∇T0 and
∇c0 for the stationary gradients of temperature and concentration remind us that
both ∇T0 and ∇c0 in (4) are constants and not gradients of locally fluctuating
temperature and concentration. As in the standard fluctuating-hydrodynamics
approach [53,54], we have included in (4) random noise terms to represent the
contributions from rapidly varying short-range fluctuations [43,46,56–58]. Thus,
we have introduced δT(r, t) as the random stress tensor and δQ(r, t) as the
random heat flux following [56,57]. Additionally, we have introduced δJ(r, t) as
the random solute flux following [43,46,58]. Note that the subscript z in (4a)
indicates that the random noise term is to be identified with the z-component of
the vector between curly brackets. This procedure of supplementing the random
Boussinesq equations for a binary liquid with random noise terms was previously
used by Schöpf and Zimmermann to study the influence of noise close to the
convective instability [59]. We do not consider any pressure fluctuations in (4),
since pressure fluctuations cause Brillouin scattering, but they do not contribute
to the Rayleigh spectrum of the scattered light.

In applying the linearized random Boussinesq equations, as given by (4), we
have assumed that all thermophysical properties of the binary fluid depend only
weakly on temperature or concentration so that the variation of these properties
as a function of z is negligible small; in practice this is a very good approx-
imation [33]. For the same reason, in (2) the concentration c of component 1
represents an average value through the fluid layer; the substitution of the local
concentration by an average concentration is only questionable for extremely di-
lute solutions [7]. Moreover, the Boussinesq approximation assumes the liquid to
be incompressible [55], so the coefficient Dth in (4b) can indeed be identified with
the thermal diffusivity λT/ρcP, where cP is the specific isobaric heat capacity.
As usual, the Dufour effect has been neglected in (4), since it is relevant only in
binary gas mixtures and in liquids near the vapor-liquid critical point [11,60,61].
Following Chandrasekhar [55], to eliminate the hydrostatic pressure gradient
we find it convenient to consider (4a) for ∇2w, by taking a double curl in the
equation for the fluctuating fluid velocity δu.

2.2 Stability of the solution of the Linearized Boussinesq Equations

There is a considerable literature applying the linearized Boussinesq equations
to binary systems, mainly focused on the analysis of the stability of the conduc-
tive solution (see, for instance, [6–11,62] and references therein). An excellent
updated review, including nonlinear-stability analysis, has recently appeared in
this Springer series of Lecture Notes in Physics [63]. The stability of the conduc-
tive solution depends on whether the temperature and concentration gradients
are stabilizing or not. Thus, stability will depend on the sign of the Rayleigh
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Fig. 1. Linear stability diagram deduced from the Boussinesq equations with free-slip-
permeable boundary conditions for a binary liquid with typical values of the Schmidt
and Prandtl numbers, according to [7]. The region of stability corresponds to the
shadowed area.

number Ra and on the sign of the separation ratio ψ. In Fig. 1 we present the
typical linear stability diagram in the {Ra,ψ} plane, plotted after Schechter et
al. [7]. The stability diagram depends on the values of the Schmidt and Prandtl
numbers. The plot in Fig. 1 was obtained, as indicated, for Sc=1000 and Pr=10,
which are typical values for an ordinary liquid mixture. Depending on the signs
of Ra and ψ one can identify four regions in the diagram of Fig. 1:

1. If Ra > 0 and ψ < 0, the temperature gradient is destabilizing whereas
the Soret-induced concentration gradient is weakly stabilizing. Note that
if β > 0, ST has to be negative to have an overall ψ < 0, see (2), and
the denser component 1 migrates to the warm lower plate. If β < 0, the
lighter component 1 migrates to the cold upper plate. In both cases the
Soret effect is weakly stabilizing. In this situation, the instability appears at a
nonzero horizontal wave number and at a nonzero frequency. The instability
mechanism is thus an oscillatory periodic Hopf bifurcation or, in the language
of Cross and Hohenberg [10], an Io-type instability. Above the threshold, the
instability leads to a traveling-waves pattern [59].

2. When Ra > 0 and ψ > 0, both the temperature and the concentration
gradient are destabilizing. For given ψ the instability appears at a lower Ra
than in the case of a pure fluid (ψ = 0). In this situation the instability
appears at a finite wave number but at zero frequency, as in a pure liquid:
it is an Is-type instability. Above the threshold, the instability leads to a
square pattern.
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3. When Ra < 0 and ψ < 0, the temperature gradient is stabilizing, but the
Soret coupling is destabilizing. For given Ra, the separation ratio ψ could
be negative enough for an instability to appear. Note that this instability
develops while heating the fluid from above, a configuration in which a pure
liquid is always stable. As above, it is an Is-type instability. It was recently
experimentally observed by La Porta and Surko [64].

4. Finally, when Ra < 0 and ψ > 0, both temperature and concentration
gradients are stabilizing and the system is always in a quiescent stable state.

5. It is interesting to note the existence of a codimension-two instability point
where the Io-instability line meets with the Is-instability line. In the linear
approximation this happens on the ψ = 0 axis [65].

It is worth mentioning that the instability diagram depends on the boundary
conditions. The diagram in Fig. 1 corresponds to free and permeable boundaries,
which is mathematically the simplest case. For this particular case, the critical
Rayleigh number Rac as a function of the separation ratio for the Io-instability
line is given by [7]: (

Rac
Ra0

)
o
=

(1 + Pr)(Sc+ Pr)(1 + Sc)
Sc2(ψ Pr + Pr + 1)

, (5)

while the critical Rayleigh for the Is-instability line is given by [7]:(
Rac
Ra0

)
s
=

Pr

Pr + ψ (Sc+ Pr)
(6)

with Ra0 = 27π4/4, the critical Rayleigh number for a pure fluid with free-
slip boundary conditions [55]. These were the expressions employed to construct
Fig. 1. The more realistic case of fixed and impermeable boundaries has also been
analyzed [9,66]. But, as in the case of a pure fluid, different boundary conditions
cause only quantitative differences while qualitatively the diagram is more or less
the same. In addition, nonlinear terms that have been neglected in (4) cause also
minor changes in the stability diagram, particularly shifting the position of the
codimension-two instability point [65]. In any case, the preceding discussion of
the relationship between stability and the signs of Ra and ψ still holds. The only
situation for which stability is always assured is when Ra < 0 and ψ > 0. In this
chapter we consider small fluctuations around the conductive state. Therefore,
in the following, we shall assume Ra < 0 and ψ > 0, the situation in which
fluctuations do not drive the system outside of a stable quiescent configuration.

2.3 Linearized Random Boussinesq Equations
in the small-Lewis-number approximation

In principle, it is possible to calculate the structure factor of the binary liquid
from the system of coupled differential equations given by (4), as was done in
the simpler case of a pure liquid [41]. However, there are several complications
which make the calculation here more involved. A first complication arises from
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the fact that, since they have the same tensorial character, the random heat flux
δQ and the random solute flux δJ are coupled and their cross-correlations are
not zero: 〈δQi ·δJj〉 �= 0 [43,58]. (But note that under some approximations these
cross correlations may be neglected, as done by Schöpf and Zimmermann [59]).
A second complication is that density or refractive-index fluctuations come from
both temperature and concentration fluctuations; hence, these two types of fluc-
tuations have to be calculated, contrary to the case of a pure liquid, where there
are no concentration fluctuations. As mentioned in the introduction, in the case
of binary liquid systems, the diffusion coefficient D is much smaller than the ther-
mal diffusivity Dth and the kinematic viscosity ν. Hence, to obtain the structure
factor of a binary liquid system we can consider to a very good approximation
the limit of vanishing Lewis number Le = D/Dth. Since ν > Dth, a small value
of the Lewis number Le also implies a small value of the inverse Schmidt number
Sc−1 = D/ν.

Velarde and Schechter [52] have considered the Boussinesq equations of a
liquid mixture for small values of the Lewis number. By supplementing the hy-
drodynamic equations obtained in [52] with the corresponding random noise
terms, one deduces from (4) in the limit Le → 0:

0 = ν ∇2 (∇2w
)− β g

(
∂2Γ

∂x2
+

∂2Γ

∂y2

)
+

1
ρ
{∇ × [∇ × (∇ · δT)]}z , (7a)

∂Γ

∂t
= D ∇2Γ − w ∇c0 + ∇δJ . (7b)

In the limit Le → 0, any coupling between the concentration fluctuations and
the temperature fluctuations vanishes and one only needs to consider coupling
between the concentration fluctuations and the transverse-velocity fluctuations,
as mentioned in the introduction. Moreover, since the transverse-velocity fluctu-
ations decay much faster than the concentration fluctuations, one does not need
to include the viscous mode directly in the dynamic structure factor, but only its
indirect effect on the concentration fluctuations. That is, in the limit Sc−1 → 0
the time derivative ∂/∂t(∇2w) on the left-hand side of (7a) can be neglected.

We may mention that the small-Lewis-number approximation has been am-
ply used in the literature to simplify the study of the stability of binary liquid
mixtures [7,52,65,67]. As discussed in the literature [7,52], the Le → 0 approxi-
mation has several shortcomings; in particular, it does not describe correctly the
situation with Ra > 0 and ψ < 0, missing the interesting Hopf bifurcation and
codimension-two instability point. But in this chapter we are only concerned with
the case Ra < 0 and ψ > 0, that is, the case of the quiescent stable thermally
conducting state, for wich the Le → 0 approximation is adequate to describe the
concentration fluctuations, as will be demonstrated in the subsequent sections.

2.4 Calculation of the structure factor

Having introduced the hydrodynamic simplifications described in Sect. 2.3, we
can now readily calculate the structure factor of the binary liquid, following a
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procedure similar to the one adopted in a previous publication [41] in the case
of a one-component liquid. In the absence of any boundary conditions we apply
a temporal and spatial Fourier transformation to (7) so as to obtain:−ν q4 −β g q2‖

∇c0 iω +D q2


w(ω, q)

Γ (ω, q)

 =

F1(ω, q)

F2(ω, q)

 , (8)

with q‖ representing the magnitude of the wave vector q in the XY plane, i.e.,
q2‖ = q2x + q2y. To simplify the notation, we have introduced in (8) Langevin
random noise terms F1 and F2, which are related to the Fourier transforms of
the random stress tensor δT(ω, q) and of the random solute flux δJ(ω, q) by:F1(ω, q)

F2(ω, q)

 =

 i ρ−1
{
qz q · [q · δT(ω, q)] − q2 [q · δT(ω, q)]z

}
−i q · δJ(ω, q)

 . (9)

Since we have adopted the small-Lewis-number approximation, the tempera-
ture fluctuations can be neglected and the Rayleigh component S(ω, q) of the
structure factor can be attributed to refractive-index fluctuations caused by the
concentration fluctuations only. Hence, the relationship between S(ω, q) and the
autocorrelation function 〈Γ ∗(ω, q) · Γ (ω′, q′)〉 of the concentration fluctuations
is simply given by:

〈Γ ∗(ω, q) · Γ (ω′, q′)〉 =
(
∂c

∂n

)2
T

S(ω, q) (2π)4 δ(ω − ω′) δ(q − q′). (10)

To deduce the autocorrelation 〈Γ ∗(ω, q) ·Γ (ω′, q′)〉 of the concentration fluctua-
tions from (8), we need the correlation functions for the Langevin noise terms F1
and F2. They can be calculated from the known correlation functions between
the different components of the random stress and the random solute flux. In
nonequilibrium fluctuating hydrodynamics it is assumed that the correlation
functions of the random stress tensor and the random solute flux retain their
local equilibrium values [43]. From the expressions for the correlation functions
of the random stress tensor δT as, for instance, given by (3.12) in [56] and for
the correlation functions of the random solute flux δJ , as given by [43,58], and
using the definition (9) of the Langevin noise terms, we obtain:

〈F ∗
1 (ω, q) · F1(ω′, q′)〉 = 2kBT

ν

ρ
q2‖ q4 (2π)4 δ(ω − ω′) δ(q − q′),

〈F ∗
2 (ω, q) · F2(ω′, q′)〉 = 2kBT

D

ρ

(
∂c

∂µ

)
T

q2 (2π)4 δ(ω − ω′) δ(q − q′),

〈F ∗
1 (ω, q) · F2(ω′, q′)〉 = 〈F ∗

2 (ω, q) · F1(ω′, q′)〉 = 0, (11)

where µ = µ1 − µ2 is the difference between the chemical potential µ1 per unit
mass of component 1 and the chemical potential µ2 per unit mass of component
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2, while kB is Boltzmann’s constant. Note that the correlations between the
random noise terms F1 and F2 are short ranged both in space and in time so
that they can be represented by delta functions. Now, inverting (8) and using (10)
and (11) one obtains for the dynamic structure factor S(ω, q) for the Rayleigh
scattering in the binary liquid:

S(ω, q) =
(
∂n

∂c

)2
T

2kBT
ρ

Dq2

[(
∂c

∂µ

)
T

+
(∇c0)

2
q2‖

νD q6

]

ω2 +D2q4

(
1 − ψ

Ra

Le

q̃2‖
q̃6

)2 . (12)

In the denominator of (12) we have introduced a dimensionless wave number
q̃ = qL, so as to express the effect of gravity g through the Rayleigh number
defined by (3), thus facilitating a comparison with previous work [46,49]. The
quantity ψRa/Le in (12) is given by:

ψ
Ra

Le
= −ψ

Dth

D

αgL4 ∇T0
ν Dth

=
βgL4 ∇c0

ν D
. (13)

A convective instability will appear when the expression (12) for S(ω, q) diverges
for some finite value of q. For such a divergence to appear it is required that
β ∇c0 > 0, i.e., the concentration of the heavier component has to be higher
above. This is the so-called salt-fountain, double-diffusive, or salt-fingers insta-
bility [7,62,65]. In our case it appears driven by the Soret effect, but it can also
be studied in a more general context considering a concentration gradient inde-
pendent of the temperature gradient, in which case it is called the thermohaline
problem [7,68]. However, we are here considering the situation with Ra < 0 (thus
α ∇T0 > 0) and ψ > 0, so that in our case analyticity of (12) is always assured.

Note that, although we have assumed that the stationary concentration gra-
dient appears through the Soret effect, upon substitution of (13) in (12), our final
result for the dynamic structure factor S(ω, q) can be written in a form in which
∇T0 and ψ do not appear explicitly. This fact suggests that our result will be
valid whenever there exists a concentration gradient in the system, independent
of whether it is induced by the Soret effect or by any other cause. Hence, we
may compare our present results with those of Vailati and Giglio [49], who con-
sidered nonequilibrium concentration fluctuations in an isothermal free-diffusion
process. We find agreement between our present result (12), and equation (24) of
Vailati and Giglio [49] for the contribution of the nonequilibrium concentration
fluctuations to the Rayleigh spectrum of scattered light. Vailati and Giglio also
obtained a second Lorentzian contribution due to the viscous fluctuation. We
have neglected this contribution here, since the hydrodynamic approximation
employed by us means in practice a small value of the inverse Schmidt num-
ber Sc−1 = D/ν. If we would have retained ∂/∂t(∇2w) on the left-hand side
of (7a) we would have recovered this second Lorentzian contribution as well.
A minor difference with the result of Vailati and Giglio is that the latter have
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assumed small scattering angles, so that q‖ � q. Equation (12) for S(ω, q) is
the generalization to arbitrary scattering angles. The fact that our result for the
nonequilibrium Rayleigh spectrum in a binary liquid in the presence of a tem-
perature gradient appears to be identical to that for the isothermal case with
a concentration gradient is a direct consequence of the Le → 0 approximation,
which neglects the temperature fluctuations and its coupling with concentration
fluctuations.

By integrating (12) over all frequencies ω, we obtain for the static structure
factor of a nonequilibrium binary liquid due to concentration fluctuations:

S(q) = SE

{
1 + S̃NE(q)

}
, (14)

with

S̃NE(q) =

[(
∂µ

∂c

)
T

(∇c0)
2

ν D
− β g ∇c0

ν D

]
1

1 − ψ
Ra

Le

q̃2‖
q̃6

q2‖
q6

. (15)

In (14) and (15), SE is the equilibrium structure factor which is obtained when
∇c0 = 0, and S̃NE represents the normalized nonequilibrium contribution to the
structure factor, which is a dimensionless quantity referred to as nonequilibrium
enhancement in several publications [34,51]. As in the case of the dynamic struc-
ture factor (12), our result (15) for the static structure factor will be valid only
in the {Ra < 0,ψ > 0} quadrant of the stability diagram in Fig. 1. In any other
case a Soret-driven double diffusive instability will appear as a divergence in the
structure factor for some finite value of q‖. A problem is that (15) has also no
divergence for Ra > 0 and ψ < 0, where a instability in the form of a Hopf
bifurcation is expected [7,10,63,65]. The fact that we do not find this instability
here is a consequence of the Le → 0 approximation [7,52]. Also in deriving (15)
we did not take into account finite-size effects. Linear instability theory of the
binary Boussinesq equations suggests that, when boundary conditions are con-
sidered together with (7), a modified structure factor could be calculated which
would be valid in some bounded region outside the {Ra < 0,ψ > 0} quadrant
(the region where the conductive solution is stable). Again as before, the static
structure factor given by (15) can be written in such a way that it depends ex-
plicitly only on the value of the stationary concentration gradient ∇c0 and not
on ψ or ∇T0. Consequently (15) can be also employed to analyze nonequilibrium
concentration fluctuations in isothermal diffusion processes [69–71].

As will be shown in Section 3, for the interpretation of several light-scattering
experiments in liquids far away from any convective instability we may neglect
the effects of gravity by taking the limit g → 0. In this limit (15) reduces to:

S̃NE(q) =
(
∂µ

∂c

)
T

(∇c0)
2

ν D

q2‖
q6

, (16)

which has been verified experimentally [51], as further discussed below. Note
that (16), contrary to (15), does not include any divergence and is valid for any
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positive or negative value of ∇c0. This is expected since in the derivation of (16)
gravity was neglected, so that the system is always in a stable quiescent state.

We remark that the derivation of the structure factor from (7) described
above can just as easily be implemented without neglecting the time derivative
∂/∂t(∇2w) on the left-hand side of (7a). Instead of (16) we would then have
obtained:

S̃NE(q) =
(
∂µ

∂c

)
T

(∇c0)
2

(ν2 −D2)
ν

D

q2‖
q6

, (17)

which for ν � D reduces to (16). We have preferred to perform the derivation in
the way it was done to retain consistency with the hydrodynamic approximations
as originally introduced by Velarde and Schechter [52].

As already pointed out, the various expressions derived here for the contri-
bution of the nonequilibrium concentration fluctuations to the structure factor
are valid for wave numbers q such that qL � 1. When qL becomes of order
unity, finite-size effects need to be considered which depend to some extent on
the nature of the boundary conditions [41,42]. Finite-size effects on the nonequi-
librium concentration fluctuations in binary liquids will be considered in a future
publication [47].

3 Experiments

During the past years several experimental results on nonequilibrium Soret-
driven concentration fluctuations have appeared in the literature. The goal of
this section is to make a comparison between experimental results and the theory
developed in Sect. 2. Two different experimental techniques have been employed
to study nonequilibrium concentration fluctuations in liquid mixtures: light scat-
tering and, more recently, quantitative shadowgraph analysis. Experiments have
been performed with binary liquid mixtures and with dilute polymer solutions.
In the case of dilute polymer solutions, as long as the concentration is low enough
to neglect entanglements, an hydrodynamic approach of the type described in
Sect. 2 should be applicable.

3.1 Experimental techniques

A nonequilibrium enhancement of the concentration fluctuations in binary liq-
uid systems has indeed been observed by small-angle light-scattering experi-
ments [34,35,39,40,50,51]. A schematic representation of such a light-scattering
experiment is shown in Fig. 2. The scattering medium is a thin horizontal fluid
layer bounded by two parallel plates of high thermal conductivity. The temper-
atures of the plates T1 and T2 can be controlled independently so as to establish
a temperature gradient across the fluid layer in the vertical direction, parallel or
antiparallel to the direction of gravity. The horizontal plates are furnished with
windows allowing a laser beam to propagate through the fluid in the direction
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Fig. 2. Schematic representation of a low-angle nonequilibrium light-scattering exper-
iment. qi is the wave vector of the incident light, qs is the wave vector of the scattered
light. The magnitude q = |qi − qs| of the scattering wave vector is related to the
scattering angle Φ by q = 2q0 sin (Φ/2), where q0 is the magnitude of the wave vector
qi of the incident light inside the liuqid. For clarity, the scattering angle Φ has been
exaggerated.

(anti)parallel to the temperature gradient. Light scattered over an angle Φ arises
from fluctuations with a wave number q such that [72]:

q = 2q0 sin(Φ/2), (18)

where q0 is the wave number of the incident light inside the fluid medium. Due
to the dependence of the nonequilibrium enhancement (16) of the structure fac-
tor on q−4, to observe any nonequilibrium enhancement one needs to measure
the scattered light at small wave numbers and, hence, at very small scattering
angles Φ. In practice this means that one measures the structure factor at q‖ = q
and q⊥ = 0, where q⊥ is the component of the wave vector q along the vertical
direction. The need for very small scattering angles complicates the experimen-
tal technique. To avoid uncertainties in the scattering angle due to laser beam
bending inside the sample the two horizontal plates need to be parallel to a
high degree and the laser beam has to be carefully aligned perpendicularly to
the windows. In addition, at these small scattering angles stray scattering from
window surfaces is dominant. Thus to obtain enough signal to background ratio
great care is required to have always very clean windows.

Nonequilibrium concentration fluctuations can be observed by both static
and dynamic light scattering. For static light scattering a photodiode array can
be employed to measure the total intensity of light. For dynamic light scattering
the light collected in the detector has to be analyzed with a correlator. In the
experiments one first measures the equilibrium light scattering by maintaining
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the temperatures of the two horizontal plates at the same value, T1 = T2. Sub-
sequently, a temperature gradient is established by independently changing the
temperatures of the two plates bounding the fluid layer. Comparing the intensity
of light collected in the detector (or the amplitude of the autocorrelation function
of the scattered light in dynamic experiments) in thermal equilibrium and out of
thermal equilibrium, experimental values for the nonequilibrium enhancement
are obtained.

Recently nonequilibrium concentration fluctuations have also been investi-
gated by a shadowgraph projection technique [70]. The experimental arrange-
ment is similar to the one depicted in Fig. 2, but instead of a laser beam, an
extended uniform monochromatic light source is employed to illuminate the sam-
ple. Then many shadowgraph images of a plane perpendicular to the temperature
gradient are obtained with a charge coupled device (CCD) detector, which mea-
sures a spatial distribution of intensity I(x), where here x is a two-dimensional
position vector in the imaging plane. For each image a shadowgraph signal is
defined by:

i(x) =
I(x) − I0(x)

I0(x)
, (19)

where I0(x) is the blank intensity distribution, when there are no fluctuations in
the index of refraction of the sample. In practice I0(x) is obtained by averaging
over many shadowgraph images, so that fluctuations cancel out and the resulting
I0(x) contains only contributions coming from nonuniform illumination of the
sample. Using physical and geometrical optics one can demonstrate that the
modulus squared of the two-dimensional Fourier transform of the shadowgraph
signal, |i(q)|2, taking an azimuthal average can be expressed as [70,73,74]:

|i(q)|2 = T̂ (q) S(q‖ = q, q⊥ = 0). (20)

The azimuthal average of |i(q)|2, indicated by the overline, depends only on the
modulus q of the two-dimensional Fourier vector q. The symbol T̂ (q) represents
an optical transfer function, which can be derived from the optical arrangement
employed to produce the shadowgraph pictures; it includes contributions from
the response of the CCD detector and from the dependence of the refractive
index on temperature and concentration [70,74]. Therefore, from an analysis of
the spectrum of the shadowgraph pictures one can determine the structure factor
of the fluid in the plane q⊥ = 0.

We note that quantitative shadowgraph experiments so far performed by
Brogioli et al. [70] refer to nonequilibrium concentration fluctuations not in-
duced by the Soret effect, but induced by free diffusion. Nevertheless, as men-
tioned in Sect. 2.4, the final theoretical result, given by (15), depends only on
the value of the stationary concentration gradient ∇c0. Hence, this equation re-
mains valid independently of whether the concentration gradient is induced by
a temperature gradient through the Soret effect or by any other process, as in
a free-diffusion process. Equation (15) has indeed been employed successfully
to analyze nonequilibrium concentration fluctuations in diffusion processes [69].
For these reasons, and also because this newly developed experimental technique
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is perfectly suited for the study of nonequilibrium concentration fluctuations
induced by thermodiffusion we have briefly sketched the fundamentals of the
shadowgraph method.

There is an equivalence between small-angle light-scattering and shadow-
graph experiments, in the sense that both methods give us S(q‖ = q, q⊥ = 0),
where for light scattering q is the scattering wave vector as given by (18), whereas
for shadowgraph techniques q is the modulus of the two-dimensional Fourier vec-
tor in the imaging plane. As mentioned by Bodenschatz et al., what it is measured
in the experiments is a kind of vertical average of the fluctuations [61].

3.2 Nonequilibrium concentration fluctuations
in binary liquid mixtures

Experimental measurements of the nonequilibrium enhancement of the concen-
tration fluctuations induced by the Soret effect in binary liquid mixtures have
been independently obtained at the University of Maryland [34,35,75,76] and
at the University of Milan [39,40]. At the University of Maryland, Sengers and
coworkers have performed nonequilibrium Rayleigh-scattering experiments in
mixtures of liquid toluene and liquid n-hexane, far from the critical point of
demixing. Because they used dynamic techniques, they were able to determine
not only the enhancement of the scattering due to the nonequilibrium con-
centration fluctuations, but also the contribution from the nonequilibrium vis-
cous and temperature fluctuations. In this mixture the Lewis number is about
Le = 3 × 10−2 which is small enough for the viscous and temperature fluctua-
tions to decay sufficiently fast so as to enable an independent determination of
the nonequilibrium enhancement of the concentration fluctuations directly from
the long-time behavior of the autocorrelation function of the scattered-light in-
tensity. A compilation of the experimental values obtained for the magnitude of
the nonequilibrium enhancement of the concentration fluctuations , designated
by Ac and to be identified with S̃NE as given by (16) or (17), can be found in
Tables IV-VI of [35] for various values of the temperature gradient ∇T0, the
wave number q and the average concentration c. In these experiments the wave
number q was large enough so that gravity effects could be neglected, but at the
same time sufficiently small to identify q with q‖ and neglect q⊥. It thus follows
from (16) or (17) that S̃NE = Ac should be proportional to (∇T0)2/q4:

S̃NE ∝ ∇T 2
0

q4
. (21)

As an illustration, we show in Fig. 3 observed values of S̃NE = Ac as a
function of (∇T0)2/q4 obtained for two concentrations of the mixture toluene
+ n-hexane at 25◦C [35]. The experiments confirm that the nonequilibrium en-
hancement of the concentration fluctuations is indeed directly proportional to
(∇T0)2 and inversely proportional to q4 [34,35,75,76]. Note that the q−4 depen-
dence for small q, verified by Fig. 3, means that the correlations in real space are
long-ranged, encompassing the entire system not involving any intrinsic length
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Fig. 3. Nonequilibrium enhancement of the concentration fluctuations Ac as a function
of ∇T 20 q

−4 at two different concentrations of toluene in n-hexane. The open symbols
are for a mole fraction of toluene x = 0.5 and the filled symbols are for a mole fraction
of toluene x = 0.75. The solid lines represent linear fits to the data. From [35].

scale, only quenched by finite-size effects when q becomes of the order L−1, the
finite height of the system acting as a natural cutoff for the wave vector of the
fluctuations [41,42,47].

For a quantitative interpretation of the observed nonequilibrium enhance-
ment of the concentration fluctuations one needs reliable values for the deriva-
tive (∂µ/∂c)T , the kinematic viscosity ν, the mass diffusion coefficient D and
the Soret coefficient ST . An accurate optical beam-bending method was devel-
oped to measure D and the Soret coefficient ST of the liquid mixture [77], but
data for (∂c/∂µ)T and ν had to be deduced from the literature [35]. In spite of
these efforts a quantitative confirmation of the accuracy of the prefactors in (16)
and (17) has not yet been obtained for liquid mixtures [34,35,75,76], but it has
been obtained for polymer solutions, as will be further discussed below [50,51].

Vailati and Giglio measured nonequilibrium concentration fluctuations in-
duced by the Soret effect in a mixture of liquid aniline and cyclohexane [39,40].
Light-scattering experiments were performed in the homogeneous phase, but not
very far from the critical consolute point. Due to critical slowing down, concen-
tration fluctuations are dominant in this situation, assuring no contribution of
temperature or viscous fluctuations to the total scattering intensity. This sce-
nario corresponds to a negligibly small Lewis number and the light-scattering
intensity should be given by (15). In addition, the experimental device used
by Vailati and Giglio allowed them to measure the scattering intensity at an-
gles sufficiently small to observe gravity effects. To simplify the analysis of the
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experiments, Vailati and Giglio introduced a “roll-off” scattering wave number
defined as [39]:

q4RO = −β g ∇c0
ν D

= −ψ
Ra

Le

1
L4 . (22)

Note again that the experiments are performed for Ra < 0 and ψ > 0, so
that the right-hand side of (22) is positive and qRO is a real quantity. With this
definition, we obtain from (15):

S̃NE ∝ ∇T 2
0

q4 + q4RO
. (23)

Note that for large q (23) reduces to (21). But, in the limit q → 0, the q−4

divergence in (21) becomes saturated and (23) predicts that a constant limiting
value for S̃NE will be reached [46].

The difference between the equilibrium and the nonequilibrium intensity of
the scattered light, which is proportional to S̃NE as measured by Vailati and
Giglio [39] for a mixture of aniline and cyclohexane is shown in Fig. 4 as a
function of the wave number q. The solid curve represents a fit to (23). Because
of the small scattering angles covered in this experiment, the crossover from
a q−4 divergence to the gravitationally induced saturation at very small q is
clearly observed. From the fit of (23) to the experimental data, Vailati and Giglio
deduced qRO = 537 cm−1, which is close to the theoretical value qRO = 410 cm−1

Fig. 4. Difference between nonequilibrium and equilibrium intensity of scattered light
for a mixture of aniline and cyclohexane as a function of the scattering vector. The
symbols represent experimental data obtained with ∇T0 = 163 K cm−1. the solid curve
represents a fit to (23). Reproduced with permission from [39].
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they obtained from (22) using literature values for the thermophysical properties
of this mixture. We should note that S̃NE is plotted in Fig. 4 in arbitrary units.
The authors did not have the resolution to determine the absolute magnitude of
the nonequilibrium enhancement of the concentration fluctuations with sufficient
accuracy to make a reliable check of the validity of the prefactor in (16) or (17).

3.3 Nonequilibrium concentration fluctuations
in dilute polymer solutions

Experimental values for the nonequilibrium enhancement S̃NE of concentra-
tion fluctuations have been obtained for dilute solutions of polystyrene (MW =
96 400) in toluene from low-angle dynamic light-scattering at the University of
Maryland [51,50,78]. As described in Sect. 3.1, the nonequilibrium enhancements
were determined by comparing the observed amplitude of the time correlation
function measured in equilibrium and out of equilibrium. The experimental val-
ues thus obtained for S̃NE at 25◦C can be found in Table II of [50], where they
are denoted again by Ac.

To make a quantitative comparison of the experimental data with the the-
oretical expression (16) for S̃NE, we have presented in Table 1 values for the
various thermophysical properties of the polymer solutions at various polymer
concentrations collected from the literature [50,79,80]. In this Table ST repre-
sents the Soret coefficient of the polymer in toluene as the solvent, as measured
by Zhang et al. [80] by an optical beam-bending technique. The values for the
solute expansion coefficient β in Table 1 were calculated from an empirical cor-
relation for the dependence of the density ρ on the concentration, at 25◦C,
proposed by Scholte [79]. For the other properties, we refer to [50]. If we esti-
mate the thermal expansion coefficient α of the polymer solution by the value
corresponding to pure toluene at 25◦C: α = 0.97 × 10−3 K−1, we note from (2)
that the separation ratio ψ is positive, ranging from ψ = 0.121 for c = 0.25% to
ψ = 1.101 for c = 4.00%. Hence, the polymer solution is indeed in a stable ther-
mally conducting state when heated from above (i.e., Ra < 0). If we estimate
the thermal diffusivity of the dilute solution by the value Dth = 0.89×10−3 cm2

Table 1. Thermophysical properties of a solution of polystyrene (MW = 96 400) in
toluene at 25◦C at several polymer concentrations c, as obtained from various literature
sources [50].

c ( ∂µ
∂c
)T D ν ST ρa β

(w/w) cm2 s−2 cm2 s−1 cm2 s−1 K−1 g cm−3 (w/w)−1

0.005 7.48× 107 5.16× 10−7 7.71× 10−3 0.218 0.8627 −0.208
0.015 4.41× 107 6.01× 10−7 10.8× 10−3 0.178 0.8645 −0.209
0.020 4.16× 107 6.51× 10−7 12.6× 10−3 0.167 0.8654 −0.209
0.040 4.25× 107 8.32× 10−7 21.4× 10−3 0.132 0.8690 −0.209
a From Scholte [79].
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s−1 corresponding to pure toluene at 25◦C, we conclude that Le � 7 × 10−4.
Hence the assumption of small Lewis number is well justified and (16) agrees
indeed with the experimental data [50,51,78].

An elegant comparison between theory and experiment can be obtained in
terms of a scaled universal representation of S̃NE adopted by Brogioli et al. [70]
for studying concentration fluctuations in free-diffusion processes. For this pur-
pose we note that (15), with the definition (22) for qRO and the small-angle
approximation q‖ � q, can be rewritten as:

S̃NE(s)
S̃0
NE

=
1

1 + s4
(24)

with

S̃0
NE = 1 +

(
∂µ

∂c

)
T

(∇c0)
2

νD q4RO
, (25)

where s = q/qRO is a scaled wave number. We note that S̃0
NE given by (25) simply

represents the nonequilibrium enhancement of the concentration fluctuations in
the limit q → 0.

The scale factors S̃0
NE and qRO in (24) depend on the thermophysical prop-

erties of the solution and on the value of the stationary concentration gradient
∇c0, which in turn depends on the applied stationary temperature gradient ∇T0
through the Soret coefficient ST in accordance with (1). For each pair of values
c and ∇T0, qRO and S̃0

NE can be calculated from the literature data presented
in Table 1. If we then scale the experimental data for S̃NE by S̃0

NE and the
wave number q by qRO, a universal curve should be obtained according to (24).
We have performed such an analysis for the experimental data obtained for the
polystyrene solution in toluene [50] and the results are shown in Fig. 5. The
insert in Fig. 5 shows in more detail the data in the actual range of experimental
wave numbers. To make Fig. 5 more legible we have plotted only experimental
data corresponding to three polymer concentrations, but there is no difference if
the data obtained for all different polymer solutions are included. It should be
emphasized that the curve in Fig. 5, unlike the ones in Fig. 3 or in Fig. 4, is not
a fit of the experimental data but is just the universal function defined in (24).
Although the experiment does not cover small enough wave numbers for the
saturation effect due to gravity to be observed, Fig. 5 does show excellent agree-
ment between theory and experiment. In fact, the light-scattering data obtained
for the polystyrene solution in toluene represent the first accurate confirmation
of the theory for the nonequilibrium concentration fluctuations, including the
prefactor in (16).

3.4 Observation of nonequilibrium concentration fluctuations
by shadowgraphy

Before closing we wish to comment shortly on the recent observation of nonequi-
librium concentration fluctuations by Brogioli et al. from a quantitative shad-
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Fig. 5. Value of the scaled nonequilibrium enhancement of the concentration fluctua-
tions as a function of the scaled scattering wave number for solutions of polystyrene in
toluene at several concentrations. The solid curve represents the universal function (24).
The insert shows the range were the actual experimental data have been obtained [50].

owgraph analysis [70]. As earlier mentioned, this work is concerned with concen-
tration gradients induced not by the Soret effect, but by a free-diffusion process.
The experimental setup is similar to the one depicted in Fig. 2 with the excep-
tion that both plates are maintained at the same temperature. Brogioli et al.
studied free-diffusion in pure water of concentrated aqueous solutions of several
solutes, including glycerol and the polymer PolyEthyleneGlycol. The initial state
was prepared by filling the cell with the lighter liquid and carefully injecting the
denser liquid from below, so that a sharp meniscus is formed. From this initial
state free diffusion proceeds until an uniform concentration is reached inside the
cell.

As commented earlier, nonequilibrium concentration fluctuations in this sys-
tem should be described by (15), if one replaces the stationary concentration
gradient ∇c0 by ∇c(z, t), the actual concentration gradient which will depend
on the time t and on the vertical coordinate z. This concentration gradient
∇c(z, t) can be calculated by solving the free-diffusion equation with a step
function as initial condition. Averaging over z one obtains a time-dependent
vertically averaged structure factor, which is the quantity measured in the shad-
owgraph experiments. The averaged structure factor has an expression similar
to (24), with a time-independent amplitude S̃0

NE, but with a time-dependent
roll-off wave vector qRO(t). The details of such a calculation can be found in the
corresponding literature [49].

The important point is that Brogioli et al. [70] found excellent quantita-
tive agreement between theory and experiments, both for polymer solutions and
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for binary liquid mixtures. We may thus conclude that the theoretical predic-
tion (15) for the nonequilibrium concentration fluctuations has been confirmed
experimentally. This recent quantitative confirmation of the working equation for
nonequilibrium concentration fluctuations for free-diffusion processes in binary
liquid mixtures makes additional quantitative measurements for liquid mixtures
in the case when the concentration gradient is induced by thermal diffusion even
more desirable.

4 Concluding remarks

The subject of Soret-driven nonequilibrium concentration fluctuations in binary
liquid systems is very interesting indeed. In this chapter we have shown how
the effects of nonequilibrium concentration fluctuations on the structure factor
of a binary liquid can be derived from the linearized Boussinesq equations as-
suming that both the thermal diffusivity Dth and the kinematic viscosity ν are
much larger than the mutual mass diffusion coefficient D. From the experiments
performed so far as reviewed in this chapter it can be said that the theory is
essentially verified. Two independent research groups have obtained equivalent
results by using two different experimental methods. Nevertheless it would be
desirable to obtain a better quantitative agreement for binary liquid mixtures
subjected to a stationary temperature gradient. A very good knowledge of the
thermophysical properties of the mixtures is required for this purpose. It would
also be desirable to modify the theory for the nonequilibrium concentration fluc-
tuations to take into account boundary conditions so as to extend its validity
from the Ra < 0, ψ > 0 quadrant in the stability diagram of Fig. 1 to the full
region where the conductive solution is stable.
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41. J.M. Ortiz de Zárate, R. Pérez Cordón, J.V. Sengers: Physica A 291, 115 (2001)
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62. St. Hollinger, M. Lücke, H. W. Müller: Phys. Rev. E 57, 4250 (1998)
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Supplementary glossary

r(x, y, z) position vector
L finite height of the fluid layer
θ(r, t) local fluctuation of the temperature
Γ (r, t) local fluctuation of the concentration
w(r, t) local fluctuation of the z-component of velocity
∇T0 stationary temperature gradient
∇c0 stationary concentration gradient induced by thermal diffusion
g gravitational acceleration constant
δT(r, t) random stress tensor
δQ(r, t) random heat flux
δJ(r, t) random solute flux
Φ scattering angle
n refractive index
S structure factor for Rayleigh scattering
SE structure factor in thermal equilibrium
S̃NE normalized nonequilibrium enhancement of the structure factor
qRO gravitationally induced “roll-off” wave number (22)
s scaled wave number (q/qRO)
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