

FICHA DE ASIGNATURA

TITULACIÓN	PLAN DE ESTUDIOS	CURSO ACADÉMICO
Licenciatura en Ciencia y Tecnología de los Alimentos	002A	2012-2013

Título de la Asignatura	ANÁLISIS QUÍMICO
Subject	CHEMICAL ANALYSIS

Código (en GEA)	106923
Carácter (Básica – Obligatoria – Optativa)	Complemento de formación
Duración (Anual - Semestral)	Semestral
Horas semanales	5 horas

Créditos	Teóricos	4
	Prácticos	2
	Seminarios	
	Otros	

Curso	Semestre	Plazas ofertadas
1º	1º	
Departamento responsable		Facultad
Química	Analítica	

	Nombre	Teléfono	e-mail
Profesor/es Coordinador/es	Carmen Martín Gómez	913941768	ccarmenmg@farm.ucm.es
	Pedro Andrés Carvajales		
Profesores que imparten la asignatura	M. Teresa Pérez Corona		
	M. Carmen Martín Gómez, Jon Sanz		

Breve descriptor

Estudio de las métodos de analíticos de mayor aplicación en tecnología de los alimentos.

Requisitos y conocimientos previos recomendados

Conocimientos básicos de Química

Objetivos generales de la asignatura

Adquirir unos conocimientos teóricos y prácticos de química analítica suficientes que permitan al estudiante su aplicación en los aspectos analíticos relacionados con la tecnología de los alimentos.

General objectives of this subject

Programa Teórico y Práctico

PROGRAMA TEÓRICO

Tema 1: METODOLOGIA ANALÍTICA

Concepto de Química Analítica y Análisis Químico. Importancia y campos de aplicación. Etapas del análisis químico. Clasificación de los métodos analíticos. Criterios de selección del método: características analíticas de un método.

Tema 2: TOMA Y PREPARACIÓN DE LA MUESTRA

Introducción. Muestreo. Tipos de muestra. Conservación y almacenamiento de la muestra. Métodos de separación y preconcentración del analito. Pretratamiento de la muestra. Métodos de mineralización por vía seca y vía húmeda.

Tema 3: TRATAMIENTO ESTADÍSTICO Y VALIDACIÓN DE RESULTADOS

Cifras significativas. Tipos de errores. Tratamiento estadístico de los resultados. Rechazo de resultados. Patrones certificados de referencia.

Tema 4: INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO

Requisitos de las reacciones volumétricas. Clasificación de los métodos volumétricos. Patrones primarios. Curva de valoración. Detección del punto final: indicadores químicos y fisicoquímicos. Cálculos en análisis volumétrico.

Tema 5: EQUILIBRIO ÁCIDO-BASE Y VOLUMETRÍAS DE NEUTRALIZACIÓN

Cálculo del pH y concentraciones en el equilibrio. Disoluciones reguladoras. Curvas de valoración de ácidos y bases fuertes. Curvas de valoración de ácidos y bases débiles. Curvas de valoración de ácidos y bases poliprótidos. Indicadores ácido-base. Aplicaciones: Valoración de mezclas de carbonatos. Valoración de mezclas de fosfatos. Método Kjeldahl para la determinación de Nitrógeno en proteínas.

Tema 6: EQUILIBRIO Y VOLUMETRÍAS DE FORMACIÓN DE COMPLEJOS

Fundamento. Ligandos monodentados y polidentados. Cálculo de la curva de valoración. Indicadores metalocrómicos. Valoraciones complexométricas.

Tema 7: EQUILIBRIO Y VOLUMETRIAS DE PRECIPITACIÓN

Solubilidad y producto de solubilidad. Condiciones de precipitación y disolución. Aspectos físico-químicos de la precipitación. Curvas de valoración. Detección del punto final de la valoración. Aplicaciones.

Tema 8: FUNDAMENTOS DEL ANÁLISIS GRAVIMÉTRICO

Definición. Clasificación de los métodos gravimétricos. Cuantitividad de la precipitación. Factor gravimétrico. Aplicaciones

Tema 9: EQUILIBRIO Y VOLUMETRÍAS REDOX

Procesos de oxidación-reducción. Ecuación de Nernst. Cálculo de la curva de valoración. Detección del punto final. Agentes oxidantes y reductores empleados como reactivos valorantes. Aplicaciones: Permanganimetrías. Dicromatometrías. Métodos basados en el sistema yodo/yoduro.

Tema 10: CONCEPTO E INTERÉS DE LAS TÉCNICAS INSTRUMENTALES

Clasificación. Evolución histórica.

Tema 11: RADIACIÓN ELECTROMAGNETICA. MÉTODOS ÓPTICOS

Parámetros ondulatorios. Interacciones de la radiación electromagnética con la materia. Clasificación de los métodos ópticos. Componentes fundamentales de los equipos instrumentales utilizados en los métodos ópticos.

Tema 12: ESPECTROSCOPÍA DE ABSORCIÓN ATÓMICA

Bases teóricas. Componentes de los equipos instrumentales. Interferencias. Ensanchamiento de líneas. Proyección analítica.

Tema 13: ESPECTROSCOPÍA DE EMISIÓN ATÓMICA

Fotometría de llama: Instrumentación y proyección analítica. Espectroscopia de emisión en plasma. Características de los plasmas analíticos. Métodos y equipos instrumentales. Interferencias. Proyección analítica. Espectroscopias láser. Microsonda láser.

Tema 14: ESPECTROFOTOMETRÍA DE ABSORCIÓN MOLECULAR EN EL ULTRAVIOLETA-VISIBLE

Transiciones electrónicas moleculares. Grupos cromóforos y auxócromos. Componentes de los equipos instrumentales. Proyección analítica.

Tema 15: ESPECTROSCOPÍA DE LUMINISCENCIA

Aspectos teóricos de los procesos luminiscentes. Espectrofluorimetría. Espectrofosforimetría. Fosforescencia a temperatura ambiente. Equipos instrumentales. Proyección analítica.

Tema 16: TÉCNICAS ÓPTICAS NO ESPECTROSCÓPICAS

Refractometría. Refractómetros clásicos e interferométricos. Proyección analítica. Polarimetría. Dispersión óptica rotatoria y dicroísmo circular. Instrumentación y proyección analítica.

Tema 17: TÉCNICAS CROMATOGRÁFICAS

Clasificación. Mecanismos de retención. Teoría de la columna. Eficacia y poder de resolución.

Tema 18: CROMATOGRAFÍA DE GASES

Aspectos específicos. Componentes básicos de los equipos instrumentales, características de los detectores. Modalidades de las cromatografías de gases. Control e influencia de la temperatura. Análisis cualitativo y cuantitativo.

Tema 19: CROMATOGRAFÍA LÍQUIDA DE ALTA EFICACIA (HPLC)

Componentes básicos de los equipos instrumentales. Modalidades de la cromatografía de líquidos: características específicas de los equipos instrumentales en las diferentes modalidades. Separaciones isocráticas y en gradiente. Aplicaciones analíticas y preparativas. Cromatografía de fluidos supecríticos.

Tema 20: TÉCNICAS ELECTROFORÉTICAS

Tipos de electroforesis. Componentes de los equipos instrumentales. Sistemas de detección y cuantificación. Proyección analítica general.

PROGRAMA PRÁCTICO

- Determinación de tiamina por fluorimetría.
- Determinación de la pureza de la lactosa por polarimetría.
- Aplicación de la ley de Lambert Beer. Análisis de un colorante.
- Medida del índice de refracción de un aceite.
- Valoración potenciométrica de un ácido.
- Fotometría de llama. Determinación de sodio y potasio.
- Determinación de la dureza de un agua por complexometría.
- Valoración REDOX.

Método docente

Clases de teoría y seminarios de problemas.

Criterios de Evaluación

Para superar la asignatura e necesario realizar y aprobar las prácticas. Se realizará un examen final de la asignatur

Otra Información Relevante

Bibliografía Básica Recomendada

- 1. D.C. Harris. "Análisis Químico Cuantitativo". Grupo Editorial Iberoamérica. 1992. Reverté. 2ª ed. 2001.
- 2. D.A. Skoog, D.M. West, F.J. Holler y S.R. Grouch. "Fundamentos de Química Analítica". Ed. McGraw Hill. 7^a ed. 2001.
- 3. F. Burriel, F. Lucena, S. Arribas, J. Hernández. "Química Analítica Cualitativa". Paraninfo. 17 ed. 2000.
- 4. López Cancio, J.A. "Problemas resueltos de Química Analítica". Ed. Thomson, Madrid. 2005.
- 5. Cámara, C., Fernández, P., Martín-Esteban, A., Pérez-Conde, C. Y Vidal, M. "Toma y tratamiento de muestras". Ed. Síntesis. Madrid, 2002.
- 6. Valls, O. y Del Castillo, B. "Técnicas Instrumentales en Farmacia y Ciencias de la Salud. Ed. Piros. Barcelona, (3ª ed.), 1985.
- 7. Strobel, H. A. y Heineman, W. R. "Chemical Instrumentation: A Systematic Approach" Ed. Wiley & Sons. New York, (3ª ed.), 1988.
- 8. Olsen, E. (1988) "Métodos Ópticos de Análisis". Ed. Reverté. Barcelona, 1988.

- 9. Skoog, D.A. y Leary, J.J. "Análisis Instrumental", Ed. McGraw-Hill, Madrid, (5ª ed.), 2000.
- 10. Rouessac, F. "Análisis Químico". Ed. McGraw-Hill. 2003.
- 11. Hernández, L. y Gonzalez, C."Introducción al Análisis Instrumental". Ed. Ariel Ciencia. 2002.