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For 1 < p < 2, if we choose 0 < θ < 1 such that 1/p = (1− θ)/1 + θ/2 and we put p′

for the conjugate index of p, 1/p + 1/p′ = 1. Then 1/p′ = θ/2 = (1− θ)/∞+ θ/2.

T : Lp([0, 2π]) −→ `p′ is bounded with norm M ≤
“ 1

2π

”1−θ“ 1√
2π

”θ

=
“ 1

2π

”1/p
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• Function Spaces.

• Approximation Theory.

• Harmonic Analysis.

• Partial Differential Equations.
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For 0 < θ < 1 and 1 ≤ q ≤ ∞, the real interpolation space (A0, A1)θ,q consists of all
a ∈ A0 + A1 which have a finite norm

‖a‖θ,q =

0@ ∞Z
0

“
t−θK(t, a)

”q dt

t

1A 1
q

if 1 ≤ q < ∞ ,

‖a‖θ,∞ = sup
t>0
{t−θK(t, a)} .
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The complex method requires the space F(Ā) of all functions f from the closed strip
S = {z ∈ C : 0 ≤ Rez ≤ 1} into A0 + A1 such that

f is bounded and continuous on S and analytic on the interior of S, and

the functions t −→ f(j + it) (j = 0, 1) are continuous from R into Aj and tend
to zero as |t| → ∞.
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Moreover, these constructions behave well with respect to bounded linear operators.
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0
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• Other examples including Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces
can be found in the books mentioned before.

B Cwikel (Duke Math. J. 65 (1992) 333-343)

B Cobos, Kühn, Schonbek (J. Funct. Anal. 106 (1992) 274-313)

Theorem.- Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples and let T ∈ L(Ā, B̄)
such that T : A0 −→ B0 is compact. For any 0 < θ < 1 and 1 ≤ q ≤ ∞, we have that

T : (A0, A1)θ,q −→ (B0, B1)θ,q

is compact.
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(1)
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If A0 ↪→ A1 then {(A0, A1)θ,q}0<θ<1 is an increasing family of
spaces joining A0 and A1.

• K(t, a; A1, A0) = infb∈A0{‖a− b‖A1 + t‖b‖A0}



Image processing. Rudin-Osher-Fatemi (ROF) denoising model.



Image processing. Rudin-Osher-Fatemi (ROF) denoising model.

B Chan and Shen, Image Processing and Analysis, SIAM, 2005.



Image processing. Rudin-Osher-Fatemi (ROF) denoising model.

B Chan and Shen, Image Processing and Analysis, SIAM, 2005.

Suppose that we observe a noised image

f = f∗ + η

where f∗ is an initial image and η is the noise.



Image processing. Rudin-Osher-Fatemi (ROF) denoising model.

B Chan and Shen, Image Processing and Analysis, SIAM, 2005.

Suppose that we observe a noised image

f = f∗ + η

where f∗ is an initial image and η is the noise. ROF model suggests to take as an
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functional
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L2

+ t‖g‖BV }
where BV is a space of bounded variation on the rectangle Ω ⊂ R2.
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B Kirsch, Springer, 1996.

B Cohen, DeVore, Petrushev and Xu (Amer. J. Math. 121 (1999) 587-628)

B Bechler, DeVore, Kamot, Petrova and Wojtaszczyk (Trans. AMS 359 (2007)
619-635)

B Cobos and Kruglyak (preprint 2009)
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(A, A∗)[2] = H with equality of norms.

Miyazaki (Bull. Kyushu Inst. Tech. 1968), Haagerup and Pisier (Canadian J. Math.
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Watbled (C.R. Acad. Sci. Paris 1995), Xu (J. Funct. Anal. 1996), Amrein, Boutet de
Monvel and Georgescu (Birkhõuser 1996), Cobos and Schonbek (Houston J. Math.
1998).
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If A0 ↪→ A1 then {(A0, A1)θ,q}0<θ<1 is an increasing family of
spaces joining A0 and A1.

• One can join properties of A0 and A1 in (A0, A1)θ,q and (A0, A1)[θ].

♦ If 1 < q < ∞ and the embedding A0 ↪→ A1 is weakly compact, then

(A0, A1)θ,q is a reflexive space.

4 If A0 or A1 is reflexive, then

(A0, A1)[θ] is a reflexive space.

• Recent results for θ = 0, 1
B Cobos, Fernández-Cabrera, Kühn and Ullrich (J. Funct. Anal. 2009)


