ABSTRACT INTERPOLATION THEORY AND SOME OF ITS APPLICATIONS IN ANALYSIS

Fernando Cobos
Universidad Complutense de Madrid

January, 2010

- Operators that can act boundedly between different couples of Banach spaces.
- Operators that can act boundedly between different couples of Banach spaces.
- Results which give relationships between properties of a given operator.
- Operators that can act boundedly between different couples of Banach spaces.
- Results which give relationships between properties of a given operator.
- Let (U, μ) be σ-finite measure spaces.

$$
\begin{gathered}
L_{p}=L_{p}(U, d \mu)=\left\{f:\|f\|_{L_{p}}=\left(\int_{U}|f(x)|^{p} d \mu\right)^{1 / p}<\infty\right\}, 1 \leq p<\infty \\
L_{\infty}=L_{\infty}(U, d \mu)=\left\{f:\|f\|_{L_{\infty}}=\text { ess sup }\{|f(x)|: x \in U\}<\infty\right\}
\end{gathered}
$$

- Operators that can act boundedly between different couples of Banach spaces.
- Results which give relationships between properties of a given operator.
- Let (U, μ) be σ-finite measure spaces.

$$
\begin{gathered}
L_{p}=L_{p}(U, d \mu)=\left\{f:\|f\|_{L_{p}}=\left(\int_{U}|f(x)|^{p} d \mu\right)^{1 / p}<\infty\right\}, 1 \leq p<\infty \\
L_{\infty}=L_{\infty}(U, d \mu)=\left\{f:\|f\|_{L_{\infty}}=\text { ess sup }\{|f(x)|: x \in U\}<\infty\right\}
\end{gathered}
$$

Riesz-Thorin theorem.- Assume that $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ and let T be a linear operator which maps continuously

$$
L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \quad \text { with norm } \quad M_{0}
$$

and

$$
L_{p_{1}}(U, d \mu) \longrightarrow L_{q_{1}}(V, d \nu) \quad \text { with norm } \quad M_{1}
$$

Take any $0<\theta<1$ and put $1 / p=(1-\theta) / p_{0}+\theta / p_{1}, 1 / q=(1-\theta) / q_{0}+\theta / q_{1}$. Then T maps continuously

$$
L_{p}(U, d \mu) \longrightarrow L_{q}(V, d \nu)
$$

with norm $M \leq M_{0}^{1-\theta} M_{1}^{\theta}$.

- Operators that can act boundedly between different couples of Banach spaces.
- Results which give relationships between properties of a given operator.
- Let (U, μ) be σ-finite measure spaces.

$$
\begin{gathered}
L_{p}=L_{p}(U, d \mu)=\left\{f:\|f\|_{L_{p}}=\left(\int_{U}|f(x)|^{p} d \mu\right)^{1 / p}<\infty\right\}, 1 \leq p<\infty \\
L_{\infty}=L_{\infty}(U, d \mu)=\left\{f:\|f\|_{L_{\infty}}=\text { ess sup }\{|f(x)|: x \in U\}<\infty\right\}
\end{gathered}
$$

Riesz-Thorin theorem.- Assume that $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ and let T be a linear operator which maps continuously

$$
L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \quad \text { with norm } \quad M_{0}
$$

and

$$
L_{p_{1}}(U, d \mu) \longrightarrow L_{q_{1}}(V, d \nu) \quad \text { with norm } \quad M_{1}
$$

Take any $0<\theta<1$ and put $1 / p=(1-\theta) / p_{0}+\theta / p_{1}, 1 / q=(1-\theta) / q_{0}+\theta / q_{1}$. Then T maps continuously

$$
L_{p}(U, d \mu) \longrightarrow L_{q}(V, d \nu)
$$

with norm $M \leq M_{0}^{1-\theta} M_{1}^{\theta}$.
\triangleright Marcel Riesz (1926); G.O. Thorin (1938)

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Since $\left((2 \pi)^{-1 / 2} e^{i m x}\right)_{m \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}([0,2 \pi])$,

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Since $\left((2 \pi)^{-1 / 2} e^{i m x}\right)_{m \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}([0,2 \pi])$,

$$
\|(\hat{f}(m))\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|f\|_{L_{2}}
$$

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Since $\left((2 \pi)^{-1 / 2} e^{i m x}\right)_{m \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}([0,2 \pi])$,

$$
\|(\hat{f}(m))\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|f\|_{L_{2}}
$$

$$
\text { If } f \in L_{1}([0,2 \pi]),|\hat{f}(m)|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}}
$$

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Since $\left((2 \pi)^{-1 / 2} e^{i m x}\right)_{m \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}([0,2 \pi])$,

$$
\|(\hat{f}(m))\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|f\|_{L_{2}}
$$

If $f \in L_{1}([0,2 \pi]),|\hat{f}(m)|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}}$. Put $T(f)=(\hat{f}(m))$.

$$
T: L_{1}([0,2 \pi]) \longrightarrow \ell_{\infty} \quad \text { is bounded with norm } \quad M_{0} \leq \frac{1}{2 \pi}
$$

and

$$
T: L_{2}([0,2 \pi]) \longrightarrow \ell_{2} \quad \text { is bounded with norm } \quad M_{1}=\frac{1}{\sqrt{2 \pi}} .
$$

Problem.- Relationship between integrability properties and decay of Fourier coefficients.

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow \hat{f}(m)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x \quad, \quad m \in \mathbb{Z}
$$

Since $\left((2 \pi)^{-1 / 2} e^{i m x}\right)_{m \in \mathbb{Z}}$ is an orthonormal basis in $L_{2}([0,2 \pi])$,

$$
\|(\hat{f}(m))\|_{\ell_{2}}=\frac{1}{\sqrt{2 \pi}}\|f\|_{L_{2}}
$$

If $f \in L_{1}([0,2 \pi]),|\hat{f}(m)|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i m x} d x\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)| d x=\frac{1}{2 \pi}\|f\|_{L_{1}}$. Put $T(f)=(\hat{f}(m))$.

$$
T: L_{1}([0,2 \pi]) \longrightarrow \ell_{\infty} \quad \text { is bounded with norm } \quad M_{0} \leq \frac{1}{2 \pi}
$$

and

$$
T: L_{2}([0,2 \pi]) \longrightarrow \ell_{2} \quad \text { is bounded with norm } \quad M_{1}=\frac{1}{\sqrt{2 \pi}} .
$$

For $1<p<2$, if we choose $0<\theta<1$ such that $1 / p=(1-\theta) / 1+\theta / 2$ and we put p^{\prime} for the conjugate index of $p, 1 / p+1 / p^{\prime}=1$. Then $1 / p^{\prime}=\theta / 2=(1-\theta) / \infty+\theta / 2$.

$$
T: L_{p}([0,2 \pi]) \longrightarrow \ell_{p^{\prime}} \text { is bounded with norm } M \leq\left(\frac{1}{2 \pi}\right)^{1-\theta}\left(\frac{1}{\sqrt{2 \pi}}\right)^{\theta}=\left(\frac{1}{2 \pi}\right)^{1 / p} .
$$

Hausdorff-Young inequality.- If $1<p<2$ and $f \in L_{p}([0,2 \pi])$ then $(\hat{f}(m)) \in \ell_{p^{\prime}}$ and

$$
\left(\sum_{m \in \mathbb{Z}}|\hat{f}(m)|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p} .
$$

Hausdorff-Young inequality.- If $1<p<2$ and $f \in L_{p}([0,2 \pi])$ then $(\hat{f}(m)) \in \ell_{p^{\prime}}$ and

$$
\left(\sum_{m \in \mathbb{Z}}|\hat{f}(m)|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p} .
$$

For $2<p \leq \infty$, since $L_{p}([0,2 \pi]) \hookrightarrow L_{2}([0,2 \pi])$, we have that

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow(\hat{f}(m)) \in \ell_{2} .
$$

Hausdorff-Young inequality.- If $1<p<2$ and $f \in L_{p}([0,2 \pi])$ then $(\hat{f}(m)) \in \ell_{p^{\prime}}$ and

$$
\left(\sum_{m \in \mathbb{Z}}|\hat{f}(m)|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p}
$$

For $2<p \leq \infty$, since $L_{p}([0,2 \pi]) \hookrightarrow L_{2}([0,2 \pi])$, we have that

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow(\hat{f}(m)) \in \ell_{2} .
$$

- Integral operators. Compactness.

Hausdorff-Young inequality.- If $1<p<2$ and $f \in L_{p}([0,2 \pi])$ then $(\hat{f}(m)) \in \ell_{p^{\prime}}$ and

$$
\left(\sum_{m \in \mathbb{Z}}|\hat{f}(m)|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p} .
$$

For $2<p \leq \infty$, since $L_{p}([0,2 \pi]) \hookrightarrow L_{2}([0,2 \pi])$, we have that

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow(\hat{f}(m)) \in \ell_{2} .
$$

- Integral operators. Compactness.

Krasnoselskii theorem.-Assume that $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ and let T be a linear operator which maps continuously

$$
L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \quad \text { and } \quad L_{p_{1}}(U, d \mu) \longrightarrow L_{q_{1}}(V, d \nu) .
$$

Suppose, in addition, that

$$
q_{0}<\infty \text { and } L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \text { is compact. }
$$

Then

$$
T: L_{p}(U, d \mu) \longrightarrow L_{q}(V, d \nu) \quad \text { is compact }
$$

provided that $0<\theta<1,1 / p=(1-\theta) / p_{0}+\theta / p_{1}$ and $1 / q=(1-\theta) / q_{0}+\theta / q_{1}$.

Hausdorff-Young inequality.- If $1<p<2$ and $f \in L_{p}([0,2 \pi])$ then $(\hat{f}(m)) \in \ell_{p^{\prime}}$ and

$$
\left(\sum_{m \in \mathbb{Z}}|\hat{f}(m)|^{p^{\prime}}\right)^{1 / p^{\prime}} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p} .
$$

For $2<p \leq \infty$, since $L_{p}([0,2 \pi]) \hookrightarrow L_{2}([0,2 \pi])$, we have that

$$
f \in L_{p}([0,2 \pi]) \rightsquigarrow(\hat{f}(m)) \in \ell_{2} .
$$

- Integral operators. Compactness.

Krasnoselskii theorem.-Assume that $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ and let T be a linear operator which maps continuously

$$
L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \quad \text { and } \quad L_{p_{1}}(U, d \mu) \longrightarrow L_{q_{1}}(V, d \nu) .
$$

Suppose, in addition, that

$$
q_{0}<\infty \text { and } L_{p_{0}}(U, d \mu) \longrightarrow L_{q_{0}}(V, d \nu) \text { is compact. }
$$

Then

$$
T: L_{p}(U, d \mu) \longrightarrow L_{q}(V, d \nu) \quad \text { is compact }
$$

provided that $0<\theta<1,1 / p=(1-\theta) / p_{0}+\theta / p_{1}$ and $1 / q=(1-\theta) / q_{0}+\theta / q_{1}$.
Problem.- $\left(L_{p_{0}}, L_{p_{1}}\right) \rightsquigarrow\left(A_{0}, A_{1}\right),\left(L_{q_{0}}, L_{q_{1}}\right) \rightsquigarrow\left(B_{0}, B_{1}\right), L_{p} \rightsquigarrow A, L_{q} \rightsquigarrow B$.

\triangleright P.L. Butzer and H. Berens, Springer, 1967.
\triangleright J. Bergh and J. Löfström, Springer, 1976.
\triangleright H. Triebel, North-Holland, 1978.
\triangleright C. Bennett and R. Sharpley, Academic Press, 1988.
\triangleright W.O. Amrein, A. Boutet de Monvel and V. Georgescu, Birkhäuser, 1996.

\triangleright P.L. Butzer and H. Berens, Springer, 1967.
\triangleright J. Bergh and J. Löfström, Springer, 1976.
\triangleright H. Triebel, North-Holland, 1978.
\triangleright C. Bennett and R. Sharpley, Academic Press, 1988.
\triangleright W.O. Amrein, A. Boutet de Monvel and V. Georgescu, Birkhäuser, 1996.

- Function Spaces.
- Approximation Theory.
- Harmonic Analysis.
- Partial Differential Equations.

Banach couple .- $\left(A_{0}, A_{1}\right), A_{j}$ Banach space and $A_{j} \hookrightarrow \mathcal{A}, j=0,1$.

Banach couple .- $\left(A_{0}, A_{1}\right), A_{j}$ Banach space and $A_{j} \hookrightarrow \mathcal{A}, j=0,1$.

$$
\begin{aligned}
A_{0}+A_{1}= & \left\{a \in \mathcal{A}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}, A_{0} \cap A_{1}=\left\{a \in \mathcal{A}: a \in A_{0}, a \in A_{1}\right\} \\
& \|a\|_{A_{0}+A_{1}}=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\} \\
& \|a\|_{A_{0} \cap A_{1}}=\max \left\{\|a\|_{A_{0}},\|a\|_{A_{1}}\right\}
\end{aligned}
$$

Banach couple .- $\left(A_{0}, A_{1}\right), A_{j}$ Banach space and $A_{j} \hookrightarrow \mathcal{A}, j=0,1$.

$$
\begin{aligned}
A_{0}+A_{1}= & \left\{a \in \mathcal{A}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}, A_{0} \cap A_{1}=\left\{a \in \mathcal{A}: a \in A_{0}, a \in A_{1}\right\} \\
& \|a\|_{A_{0}+A_{1}}=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\} \\
& \|a\|_{A_{0} \cap A_{1}}=\max \left\{\|a\|_{A_{0}},\|a\|_{A_{1}}\right\}
\end{aligned}
$$

Peetre's K-functional:

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}, \quad t>0
$$

Banach couple .- $\left(A_{0}, A_{1}\right), A_{j}$ Banach space and $A_{j} \hookrightarrow \mathcal{A}, j=0,1$.

$$
\begin{aligned}
A_{0}+A_{1}= & \left\{a \in \mathcal{A}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}, A_{0} \cap A_{1}=\left\{a \in \mathcal{A}: a \in A_{0}, a \in A_{1}\right\} \\
& \|a\|_{A_{0}+A_{1}}=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\} \\
& \|a\|_{A_{0} \cap A_{1}}=\max \left\{\|a\|_{A_{0}},\|a\|_{A_{1}}\right\}
\end{aligned}
$$

Peetre's K-functional:

$$
K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a=a_{0}+a_{1}, a_{j} \in A_{j}\right\}, \quad t>0
$$

\triangleright J.L.-Lions and J. Peetre (Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68)
For $0<\theta<1$ and $1 \leq q \leq \infty$, the real interpolation space $\left(A_{0}, A_{1}\right)_{\theta, q}$ consists of all $a \in A_{0}+A_{1}$ which have a finite norm

$$
\begin{gathered}
\|a\|_{\theta, q}=\left(\int_{0}^{\infty}\left(t^{-\theta} K(t, a)\right)^{q} \frac{d t}{t}\right)^{\frac{1}{q}} \text { if } 1 \leq q<\infty \\
\|a\|_{\theta, \infty}=\sup _{t>0}\left\{t^{-\theta} K(t, a)\right\}
\end{gathered}
$$

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

- f is bounded and continuous on S and analytic on the interior of S, and
- the functions $t \longrightarrow f(j+i t)(j=0,1)$ are continuous from \mathbb{R} into A_{j} and tend to zero as $|t| \rightarrow \infty$.

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

- f is bounded and continuous on S and analytic on the interior of S, and
- the functions $t \longrightarrow f(j+i t)(j=0,1)$ are continuous from \mathbb{R} into A_{j} and tend to zero as $|t| \rightarrow \infty$.

$$
\|f\|_{\mathcal{F}(\bar{A})}=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{A_{1}}\right\} .
$$

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

- f is bounded and continuous on S and analytic on the interior of S, and
- the functions $t \longrightarrow f(j+i t)(j=0,1)$ are continuous from \mathbb{R} into A_{j} and tend to zero as $|t| \rightarrow \infty$.

$$
\|f\|_{\mathcal{F}(\bar{A})}=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{A_{1}}\right\} .
$$

For $0<\theta<1$, the complex interpolation space $\left[A_{0}, A_{1}\right]_{\theta}$ consists of all $a \in A_{0}+A_{1}$ such that $a=f(\theta)$ for some $f \in \mathcal{F}(\bar{A})$.

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

- f is bounded and continuous on S and analytic on the interior of S, and
- the functions $t \longrightarrow f(j+i t)(j=0,1)$ are continuous from \mathbb{R} into A_{j} and tend to zero as $|t| \rightarrow \infty$.

$$
\|f\|_{\mathcal{F}(\bar{A})}=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{A_{1}}\right\} .
$$

For $0<\theta<1$, the complex interpolation space $\left[A_{0}, A_{1}\right]_{\theta}$ consists of all $a \in A_{0}+A_{1}$ such that $a=f(\theta)$ for some $f \in \mathcal{F}(\bar{A})$.

$$
\|a\|_{[\theta]}=\inf \left\{\|f\|_{\mathcal{F}(\bar{A})}: f(\theta)=a, f \in \mathcal{F}(\bar{A})\right\} .
$$

\triangleright A.P. Calderón (Studia Math. 24 (1964) 113-190)

The complex method requires the space $\mathcal{F}(\bar{A})$ of all functions f from the closed strip $S=\{z \in \mathbb{C}: 0 \leq \operatorname{Re} z \leq 1\}$ into $A_{0}+A_{1}$ such that

- f is bounded and continuous on S and analytic on the interior of S, and
- the functions $t \longrightarrow f(j+i t)(j=0,1)$ are continuous from \mathbb{R} into A_{j} and tend to zero as $|t| \rightarrow \infty$.

$$
\|f\|_{\mathcal{F}(\bar{A})}=\max \left\{\sup _{t \in \mathbb{R}}\|f(i t)\|_{A_{0}}, \sup _{t \in \mathbb{R}}\|f(1+i t)\|_{A_{1}}\right\}
$$

For $0<\theta<1$, the complex interpolation space $\left[A_{0}, A_{1}\right]_{\theta}$ consists of all $a \in A_{0}+A_{1}$ such that $a=f(\theta)$ for some $f \in \mathcal{F}(\bar{A})$.

$$
\|a\|_{[\theta]}=\inf \left\{\|f\|_{\mathcal{F}(\bar{A})}: f(\theta)=a, f \in \mathcal{F}(\bar{A})\right\}
$$

\triangleright A.P. Calderón (Studia Math. 24 (1964) 113-190)
It turns out that

$$
A_{0} \cap A_{1} \hookrightarrow\left(A_{0}, A_{1}\right)_{\theta, 1} \hookrightarrow\left[A_{0}, A_{1}\right]_{\theta} \hookrightarrow\left(A_{0}, A_{1}\right)_{\theta, \infty} \hookrightarrow A_{0}+A_{1}
$$

Moreover, these constructions behave well with respect to bounded linear operators.

Let $\bar{B}=\left(B_{0}, B_{1}\right)$ be another Banach couple. If T is a linear operator from $A_{0}+A_{1}$ into $B_{0}+B_{1}$, whose restrictions $T: A_{j} \longrightarrow B_{j}$ are bounded for $j=0,1$, then we write $T \in \mathcal{L}(\bar{A}, \bar{B})$.

Let $\bar{B}=\left(B_{0}, B_{1}\right)$ be another Banach couple. If T is a linear operator from $A_{0}+A_{1}$ into $B_{0}+B_{1}$, whose restrictions $T: A_{j} \longrightarrow B_{j}$ are bounded for $j=0,1$, then we write $T \in \mathcal{L}(\bar{A}, \bar{B})$.

Interpolation theorem.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couples $\bar{A}=\left(A_{0}, A_{1}\right), \bar{B}=\left(B_{0}, B_{1}\right)$ and any operator $T \in \mathcal{L}(\bar{A}, \bar{B})$, the restriction of T to $\mathfrak{F}\left(A_{0}, A_{1}\right)$ is a bounded operator $T: \mathfrak{F}\left(A_{0}, A_{1}\right) \longrightarrow \mathfrak{F}\left(B_{0}, B_{1}\right)$ with norm

$$
\|T\|_{\mathfrak{F}\left(A_{0}, A_{1}\right), \mathfrak{F}\left(B_{0}, B_{1}\right)} \leq\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta}
$$

Let $\bar{B}=\left(B_{0}, B_{1}\right)$ be another Banach couple. If T is a linear operator from $A_{0}+A_{1}$ into $B_{0}+B_{1}$, whose restrictions $T: A_{j} \longrightarrow B_{j}$ are bounded for $j=0,1$, then we write $T \in \mathcal{L}(\bar{A}, \bar{B})$.

Interpolation theorem.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couples $\bar{A}=\left(A_{0}, A_{1}\right), \bar{B}=\left(B_{0}, B_{1}\right)$ and any operator $T \in \mathcal{L}(\bar{A}, \bar{B})$, the restriction of T to $\mathfrak{F}\left(A_{0}, A_{1}\right)$ is a bounded operator $T: \mathfrak{F}\left(A_{0}, A_{1}\right) \longrightarrow \mathfrak{F}\left(B_{0}, B_{1}\right)$ with norm

$$
\|T\|_{\mathfrak{F}\left(A_{0}, A_{1}\right), \mathfrak{F}\left(B_{0}, B_{1}\right)} \leq\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta}
$$

Examples. Let (U, μ) be a σ-finite measure space. Then $\left(L_{1}(U), L_{\infty}(U)\right)$ is a Banach couple.

Let $\bar{B}=\left(B_{0}, B_{1}\right)$ be another Banach couple. If T is a linear operator from $A_{0}+A_{1}$ into $B_{0}+B_{1}$, whose restrictions $T: A_{j} \longrightarrow B_{j}$ are bounded for $j=0,1$, then we write $T \in \mathcal{L}(\bar{A}, \bar{B})$.

Interpolation theorem.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couples $\bar{A}=\left(A_{0}, A_{1}\right), \bar{B}=\left(B_{0}, B_{1}\right)$ and any operator $T \in \mathcal{L}(\bar{A}, \bar{B})$, the restriction of T to $\mathfrak{F}\left(A_{0}, A_{1}\right)$ is a bounded operator $T: \mathfrak{F}\left(A_{0}, A_{1}\right) \longrightarrow \mathfrak{F}\left(B_{0}, B_{1}\right)$ with norm

$$
\|T\|_{\mathfrak{F}\left(A_{0}, A_{1}\right), \mathfrak{F}\left(B_{0}, B_{1}\right)} \leq\|T\|_{A_{0}, B_{0}}^{1-\theta}\|T\|_{A_{1}, B_{1}}^{\theta}
$$

Examples. Let (U, μ) be a σ-finite measure space. Then $\left(L_{1}(U), L_{\infty}(U)\right)$ is a Banach couple.
For $f \in L_{1}(U)+L_{\infty}(U)$, we have

$$
K\left(t, f ; L_{1}(U), L_{\infty}(U)\right)=\int_{0}^{t} f^{*}(s) d s \quad, \quad t>0
$$

Here f^{*} is the non-increasing rearrangement of f on $(0, \infty)$ is given by

$$
f^{*}(t)=\inf \{\delta>0: \mu(\{x \in U:|f(x)|>\delta\}) \leq t\}
$$

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

For the complex method, it holds with equality of norms

$$
\left[L_{1}, L_{\infty}\right]_{\theta}=L_{p}
$$

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

For the complex method, it holds with equality of norms

$$
\left[L_{1}, L_{\infty}\right]_{\theta}=L_{p}
$$

Corollary.- $\left(\ell_{1}, \ell_{\infty}\right)_{\theta, p}=\ell_{p}$.

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

For the complex method, it holds with equality of norms

$$
\left[L_{1}, L_{\infty}\right]_{\theta}=L_{p}
$$

Corollary.- $\left(\ell_{1}, \ell_{\infty}\right)_{\theta, p}=\ell_{p}$.

- Let H be a Hilbert space. Put $S_{\infty}=S_{\infty}(H)=\{T \in \mathcal{L}(H, H): T$ is compact $\}$.

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

For the complex method, it holds with equality of norms

$$
\left[L_{1}, L_{\infty}\right]_{\theta}=L_{p}
$$

Corollary.- $\left(\ell_{1}, \ell_{\infty}\right)_{\theta, p}=\ell_{p}$.

- Let H be a Hilbert space. Put $S_{\infty}=S_{\infty}(H)=\{T \in \mathcal{L}(H, H): T$ is compact $\}$.

The singular numbers of T are defined by

$$
s_{n}(T)=\inf \left\{\|T-R\|_{H, H}: R \in \mathcal{L}(H, H), \quad \text { rank } R<n\right\}
$$

Theorem .- If $1 \leq q \leq \infty, 0<\theta<1$ and $1 / p=1-\theta$, then we have with equivalence of norms

$$
\left(L_{1}, L_{\infty}\right)_{\theta, p}=L_{p}
$$

For the complex method, it holds with equality of norms

$$
\left[L_{1}, L_{\infty}\right]_{\theta}=L_{p}
$$

Corollary.- $\left(\ell_{1}, \ell_{\infty}\right)_{\theta, p}=\ell_{p}$.

- Let H be a Hilbert space. Put $S_{\infty}=S_{\infty}(H)=\{T \in \mathcal{L}(H, H): T$ is compact $\}$.

The singular numbers of T are defined by

$$
s_{n}(T)=\inf \left\{\|T-R\|_{H, H}: R \in \mathcal{L}(H, H), \quad \text { rank } R<n\right\}
$$

For $1 \leq p<\infty$, the Schatten p-class is defined by

$$
S_{p}=\left\{T \in S_{\infty}:\|T\|_{S_{p}}=\left(\sum_{n=1}^{\infty} s_{n}(T)^{p}\right)^{1 / p}<\infty\right\}
$$

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

Theorem .-

$$
\left(S_{1}, S_{\infty}\right)_{\theta, p}=S_{p}, \quad 1 / p=1-\theta
$$

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

Theorem .-

$$
\left(S_{1}, S_{\infty}\right)_{\theta, p}=S_{p}, \quad 1 / p=1-\theta
$$

For the complex method we have with equal norms $\left[S_{1}, S_{\infty}\right]_{\theta}=S_{p}$.

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

Theorem .-

$$
\left(S_{1}, S_{\infty}\right)_{\theta, p}=S_{p}, \quad 1 / p=1-\theta
$$

For the complex method we have with equal norms $\left[S_{1}, S_{\infty}\right]_{\theta}=S_{p}$.

- Other examples including Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces can be found in the books mentioned before.

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

Theorem .-

$$
\left(S_{1}, S_{\infty}\right)_{\theta, p}=S_{p}, \quad 1 / p=1-\theta
$$

For the complex method we have with equal norms $\left[S_{1}, S_{\infty}\right]_{\theta}=S_{p}$.

- Other examples including Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces can be found in the books mentioned before.
\triangleright Cwikel (Duke Math. J. 65 (1992) 333-343)
\triangleright Cobos, Kühn, Schonbek (J. Funct. Anal. 106 (1992) 274-313)

$$
K\left(t, T ; S_{1}, S_{\infty}\right)=K\left(t,\left(s_{n}(t)\right) ; \ell_{1}, \ell_{\infty}\right)
$$

Theorem .-

$$
\left(S_{1}, S_{\infty}\right)_{\theta, p}=S_{p}, \quad 1 / p=1-\theta
$$

For the complex method we have with equal norms $\left[S_{1}, S_{\infty}\right]_{\theta}=S_{p}$.

- Other examples including Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces can be found in the books mentioned before.
\triangleright Cwikel (Duke Math. J. 65 (1992) 333-343)
\triangleright Cobos, Kühn, Schonbek (J. Funct. Anal. 106 (1992) 274-313)

Theorem.- Let $\bar{A}=\left(A_{0}, A_{1}\right), \bar{B}=\left(B_{0}, B_{1}\right)$ be Banach couples and let $T \in \mathcal{L}(\bar{A}, \bar{B})$ such that $T: A_{0} \longrightarrow B_{0}$ is compact. For any $0<\theta<1$ and $1 \leq q \leq \infty$, we have that

$$
T:\left(A_{0}, A_{1}\right)_{\theta, q} \longrightarrow\left(B_{0}, B_{1}\right)_{\theta, q}
$$

is compact.

Proposition.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couple $\bar{A}=\left(A_{0}, A_{1}\right)$, we have
(1)

$$
\|a\|_{\mathfrak{F}(\bar{A})} \leq C\|a\|_{A_{0}}^{1-\theta}\|a\|_{A_{1}}^{\theta} \quad, \quad a \in A_{0} \cap A_{1}
$$

$$
\begin{equation*}
K(t, a) \leq C t^{\theta}\|a\|_{\mathfrak{F}(\bar{A})}, \quad a \in \mathfrak{F}(\bar{A}), \quad t>0 \tag{2}
\end{equation*}
$$

for some constant C independent of a and t.

Proposition.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couple $\bar{A}=\left(A_{0}, A_{1}\right)$, we have

$$
\begin{equation*}
\|a\|_{\mathfrak{F}(\bar{A})} \leq C\|a\|_{A_{0}}^{1-\theta}\|a\|_{A_{1}}^{\theta} \quad, \quad a \in A_{0} \cap A_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K(t, a) \leq C t^{\theta}\|a\|_{\mathfrak{F}(\bar{A})}, \quad a \in \mathfrak{F}(\bar{A}), t>0 \tag{2}
\end{equation*}
$$

for some constant C independent of a and t.

Proposition.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couple $\bar{A}=\left(A_{0}, A_{1}\right)$, we have

$$
\begin{equation*}
\|a\|_{\mathfrak{F}(\bar{A})} \leq C\|a\|_{A_{0}}^{1-\theta}\|a\|_{A_{1}}^{\theta} \quad, \quad a \in A_{0} \cap A_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K(t, a) \leq C t^{\theta}\|a\|_{\mathfrak{F}(\bar{A})}, \quad a \in \mathfrak{F}(\bar{A}), \quad t>0 \tag{2}
\end{equation*}
$$

for some constant C independent of a and t.

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

Proposition.- Let $0<\theta<1,1 \leq q \leq \infty$ and let \mathfrak{F} be the real method $(\cdot, \cdot)_{\theta, q}$ or the complex method $[\cdot, \cdot]_{\theta}$. Given any Banach couple $\bar{A}=\left(A_{0}, A_{1}\right)$, we have

$$
\begin{equation*}
\|a\|_{\mathfrak{F}(\bar{A})} \leq C\|a\|_{A_{0}}^{1-\theta}\|a\|_{A_{1}}^{\theta} \quad, \quad a \in A_{0} \cap A_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
K(t, a) \leq C t^{\theta}\|a\|_{\mathfrak{F}(\bar{A})}, \quad a \in \mathfrak{F}(\bar{A}), \quad t>0 \tag{2}
\end{equation*}
$$

for some constant C independent of a and t.

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

- $\quad K\left(t, a ; A_{1}, A_{0}\right)=\inf _{b \in A_{0}}\left\{\|a-b\|_{A_{1}}+t\|b\|_{A_{0}}\right\}$

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.
Suppose that we observe a noised image

$$
f=f_{*}+\eta
$$

where f_{*} is an initial image and η is the noise.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.
Suppose that we observe a noised image

$$
f=f_{*}+\eta
$$

where f_{*} is an initial image and η is the noise. ROF model suggests to take as an approximation to the initial image f_{*} the function $f_{t} \in B V$ which minimizes the functional

$$
L_{2,1}\left(t, f ; L_{2}, B V\right)=i n f_{g \in B V}\left\{\|f-g\|_{L_{2}}^{2}+t\|g\|_{B V}\right\}
$$

where $B V$ is a space of bounded variation on the rectangle $\Omega \subset \mathbb{R}^{2}$.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.
Suppose that we observe a noised image

$$
f=f_{*}+\eta
$$

where f_{*} is an initial image and η is the noise. ROF model suggests to take as an approximation to the initial image f_{*} the function $f_{t} \in B V$ which minimizes the functional

$$
L_{2,1}\left(t, f ; L_{2}, B V\right)=i n f_{g \in B V}\left\{\|f-g\|_{L_{2}}^{2}+t\|g\|_{B V}\right\}
$$

where $B V$ is a space of bounded variation on the rectangle $\Omega \subset \mathbb{R}^{2}$. When it is known the estimate of the noise

$$
\|\eta\|_{L^{2}} \leq \varepsilon
$$

then $t>0$ should be choose such that $\left\|f-f_{t}\right\|_{L_{2}}=\varepsilon$.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.
Suppose that we observe a noised image

$$
f=f_{*}+\eta
$$

where f_{*} is an initial image and η is the noise. ROF model suggests to take as an approximation to the initial image f_{*} the function $f_{t} \in B V$ which minimizes the functional

$$
L_{2,1}\left(t, f ; L_{2}, B V\right)=i n f_{g \in B V}\left\{\|f-g\|_{L_{2}}^{2}+t\|g\|_{B V}\right\}
$$

where $B V$ is a space of bounded variation on the rectangle $\Omega \subset \mathbb{R}^{2}$. When it is known the estimate of the noise

$$
\|\eta\|_{L^{2}} \leq \varepsilon
$$

then $t>0$ should be choose such that $\left\|f-f_{t}\right\|_{L_{2}}=\varepsilon$.
\triangleright Kirsch, Springer, 1996.

Image processing. Rudin-Osher-Fatemi (ROF) denoising model.
\triangleright Chan and Shen, Image Processing and Analysis, SIAM, 2005.
Suppose that we observe a noised image

$$
f=f_{*}+\eta
$$

where f_{*} is an initial image and η is the noise. ROF model suggests to take as an approximation to the initial image f_{*} the function $f_{t} \in B V$ which minimizes the functional

$$
L_{2,1}\left(t, f ; L_{2}, B V\right)=i n f_{g \in B V}\left\{\|f-g\|_{L_{2}}^{2}+t\|g\|_{B V}\right\}
$$

where $B V$ is a space of bounded variation on the rectangle $\Omega \subset \mathbb{R}^{2}$. When it is known the estimate of the noise

$$
\|\eta\|_{L^{2}} \leq \varepsilon
$$

then $t>0$ should be choose such that $\left\|f-f_{t}\right\|_{L_{2}}=\varepsilon$.
\triangleright Kirsch, Springer, 1996.
\triangleright Cohen, DeVore, Petrushev and Xu (Amer. J. Math. 121 (1999) 587-628)
\triangleright Bechler, DeVore, Kamot, Petrova and Wojtaszczyk (Trans. AMS 359 (2007) 619-635)
\triangleright Cobos and Kruglyak (preprint 2009)

Interpolation between a Banach space and its anti-dual.

Interpolation between a Banach space and its anti-dual.

Let $A \hookrightarrow H$ continuously and densely.

Interpolation between a Banach space and its anti-dual.
Let $A \hookrightarrow H$ continuously and densely.
$A \hookrightarrow H \hookrightarrow A^{*}, A^{*}$ being the anti-dual of A.

Interpolation between a Banach space and its anti-dual.

Let $A \hookrightarrow H$ continuously and densely.
$A \hookrightarrow H \hookrightarrow A^{*}, A^{*}$ being the anti-dual of A.
\triangleright J.L.-Lions and J. Peetre (Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68)
\triangleright Peetre (Reidel, 1985, pp.163-223)

Interpolation between a Banach space and its anti-dual.

Let $A \hookrightarrow H$ continuously and densely.
$A \hookrightarrow H \hookrightarrow A^{*}, A^{*}$ being the anti-dual of A.
\triangleright J.L.-Lions and J. Peetre (Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68)
\triangleright Peetre (Reidel, 1985, pp.163-223)
If A is reflexive,

$$
\begin{gathered}
\left(A, A^{*}\right)_{1 / 2,2}=H \quad \text { with equivalence of norms, } \\
\left(A, A^{*}\right)_{[2]}=H \quad \text { with equality of norms. }
\end{gathered}
$$

Interpolation between a Banach space and its anti-dual.

Let $A \hookrightarrow H$ continuously and densely.
$A \hookrightarrow H \hookrightarrow A^{*}, A^{*}$ being the anti-dual of A.
\triangleright J.L.-Lions and J. Peetre (Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68)
\triangleright Peetre (Reidel, 1985, pp.163-223)
If A is reflexive,

$$
\begin{gathered}
\left(A, A^{*}\right)_{1 / 2,2}=H \quad \text { with equivalence of norms, } \\
\left(A, A^{*}\right)_{[2]}=H \quad \text { with equality of norms. }
\end{gathered}
$$

Miyazaki (Bull. Kyushu Inst. Tech. 1968), Haagerup and Pisier (Canadian J. Math. 1989), Pisier (Memoirs AMS 1996)

$$
A^{*} \hookrightarrow H \hookrightarrow A
$$

Interpolation between a Banach space and its anti-dual.

Let $A \hookrightarrow H$ continuously and densely.
$A \hookrightarrow H \hookrightarrow A^{*}, A^{*}$ being the anti-dual of A.
\triangleright J.L.-Lions and J. Peetre (Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68)
\triangleright Peetre (Reidel, 1985, pp.163-223)
If A is reflexive,

$$
\begin{gathered}
\left(A, A^{*}\right)_{1 / 2,2}=H \quad \text { with equivalence of norms, } \\
\left(A, A^{*}\right)_{[2]}=H \quad \text { with equality of norms. }
\end{gathered}
$$

Miyazaki (Bull. Kyushu Inst. Tech. 1968), Haagerup and Pisier (Canadian J. Math. 1989), Pisier (Memoirs AMS 1996)

$$
A^{*} \hookrightarrow H \hookrightarrow A
$$

Watbled (C.R. Acad. Sci. Paris 1995), Xu (J. Funct. Anal. 1996), Amrein, Boutet de Monvel and Georgescu (Birkhõuser 1996), Cobos and Schonbek (Houston J. Math. 1998).

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

- One can join properties of A_{0} and A_{1} in $\left(A_{0}, A_{1}\right)_{\theta, q}$ and $\left(A_{0}, A_{1}\right)_{[\theta]}$.

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

- One can join properties of A_{0} and A_{1} in $\left(A_{0}, A_{1}\right)_{\theta, q}$ and $\left(A_{0}, A_{1}\right)_{[\theta]}$.

If $1<q<\infty$ and the embedding $A_{0} \hookrightarrow A_{1}$ is weakly compact, then $\left(A_{0}, A_{1}\right)_{\theta, q} \quad$ is a reflexive space.

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

- One can join properties of A_{0} and A_{1} in $\left(A_{0}, A_{1}\right)_{\theta, q}$ and $\left(A_{0}, A_{1}\right)_{[\theta]}$.

If $1<q<\infty$ and the embedding $A_{0} \hookrightarrow A_{1}$ is weakly compact, then $\left(A_{0}, A_{1}\right)_{\theta, q} \quad$ is a reflexive space.
$\triangle \quad$ If A_{0} or A_{1} is reflexive, then

$$
\left(A_{0}, A_{1}\right)_{[\theta]} \quad \text { is a reflexive space. }
$$

If $A_{0} \hookrightarrow A_{1}$ then $\left\{\left(A_{0}, A_{1}\right)_{\theta, q}\right\}_{0<\theta<1}$ is an increasing family of spaces joining A_{0} and A_{1}.

- One can join properties of A_{0} and A_{1} in $\left(A_{0}, A_{1}\right)_{\theta, q}$ and $\left(A_{0}, A_{1}\right)_{[\theta]}$.
$\diamond \quad$ If $1<q<\infty$ and the embedding $A_{0} \hookrightarrow A_{1}$ is weakly compact, then

$$
\left(A_{0}, A_{1}\right)_{\theta, q} \quad \text { is a reflexive space. }
$$

$\triangle \quad$ If A_{0} or A_{1} is reflexive, then

$$
\left(A_{0}, A_{1}\right)_{[\theta]} \quad \text { is a reflexive space. }
$$

- Recent results for $\theta=0,1$
\triangleright Cobos, Fernández-Cabrera, Kühn and Ullrich (J. Funct. Anal. 2009)

