Time-frequency Analysis meets Complex Analysis

Yurii Lyubarskii
Norwegian University of Sciences and Technology

January 22, 2010

Group of Complex and Harmonic Analysis at the Department of Mathematical Sciences, NTNU

Group of Complex and Harmonic Analysis at the Department of Mathematical Sciences, NTNU

M.Irgens, K.Hag, L.Lorentzen, Yu. Lyubarskii, E.Malinnikova, K.Seip

3 posdocs,
6 PhD students

Group of Complex and Harmonic Analysis at the Department of Mathematical Sciences, NTNU

M.Irgens, K.Hag, L.Lorentzen, Yu. Lyubarskii, E.Malinnikova, K.Seip

3 posdocs,
6 PhD students

- Spaces of analytic functions
- Geometrical function theory
- Continuous fractions, Moment problems
- Spectral theory
- Applications to signal analysis

Group of Complex and Harmonic Analysis at the Department of Mathematical Sciences, NTNU

M.Irgens, K.Hag, L.Lorentzen, Yu. Lyubarskii, E.Malinnikova, K.Seip

3 posdocs,
6 PhD students

- Spaces of analytic functions
- Geometrical function theory
- Continuous fractions, Moment problems
- Spectral theory
- Applications to signal analysis

Mathematical didactic

Why I chose this topic

Why I chose this topic

- This is one of my favorite subjects;

Why I chose this topic

- This is one of my favorite subjects;
- Time-frequency analysis (TFA) is an intensively developed subject which links topics in physics and engineering with a variety of mathematical subjects

Why I chose this topic

- This is one of my favorite subjects;
- Time-frequency analysis (TFA) is an intensively developed subject which links topics in physics and engineering with a variety of mathematical subjects
- In this topic we have many common interests with our Spanish colleagues.

Plan of the talk

Plan of the talk

- TFA - what is it about ?

Plan of the talk

- TFA - what is it about?
- Preliminary notions and results

Plan of the talk

- TFA - what is it about?
- Preliminary notions and results
- Relation to complex analysis

Plan of the talk

- TFA - what is it about?
- Preliminary notions and results
- Relation to complex analysis
- Further results

Time Frequency Analysis

Setting of the problem:
Given a signal $f(t)$ find which frequency (frequencies) does it have at each single moment t of time and write down the corresponding representation

Time Frequency Analysis

Setting of the problem:
Given a signal $f(t)$ find which frequency (frequencies) does it have at each single moment t of time and write down the corresponding representation

The standard Fourier transform

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

does NOT work, of course.

Time Frequency Analysis

Setting of the problem:
Given a signal $f(t)$ find which frequency (frequencies) does it have at each single moment t of time and write down the corresponding representation

The standard Fourier transform

$$
f(t)=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega t} d \omega
$$

does NOT work, of course.
Yet each of you knows the answer:

Music score

Free sheermusic from wrw snotes.com

Fur Elise

Yurii Lyubarskii Norwegian University of Sciences and Technol Time-frequency Analysis meets Complex Analysis

The task of TFA:

UNIVERSAL MATHEMATICAL MODEL OF MUSIC SCORE

Single note

Take a function g such that both g and \hat{g} were well concentrated around the origin, meaning

$$
\Delta(g)=\int_{-\infty}^{\infty} t^{2}|g(t)|^{2} d t \int_{-\infty}^{\infty} \omega^{2}|\hat{g}|^{2} d \omega
$$

were small. For example $g(t)=e^{-t^{2} / 2}$.

Single note

Take a function g such that both g and \hat{g} were well concentrated around the origin, meaning

$$
\Delta(g)=\int_{-\infty}^{\infty} t^{2}|g(t)|^{2} d t \int_{-\infty}^{\infty} \omega^{2}|\hat{g}|^{2} d \omega
$$

were small. For example $g(t)=e^{-t^{2} / 2}$.
Given t_{0} and ω_{0} the function

$$
g_{t_{0}, \omega_{0}}(t)=e^{2 \pi i \omega_{0} t} g\left(t-t_{0}\right)
$$

represents a "single note" concentrated around t_{0} and time and around ω_{0} in frequency.

Mathematical musical score:

can be viewed as follows:
Fix a "generator" g and $a, b>0$ and consider the expansion (Gabor series)

$$
f(t)=\sum_{m, n=-\infty}^{\infty} c_{m, n} e^{2 \pi i a m t} g(t-b n)
$$

Mathematical musical score:

can be viewed as follows:
Fix a "generator" g and $a, b>0$ and consider the expansion (Gabor series)

$$
f(t)=\sum_{m, n=-\infty}^{\infty} c_{m, n} e^{2 \pi i a m t} g(t-b n)
$$

One of the most important applications: AD conversion for signal transmission:

$$
f \mapsto\left\{c_{m, n}\right\} \mapsto \tilde{f}
$$

Mathematical musical score:

can be viewed as follows:
Fix a "generator" g and $a, b>0$ and consider the expansion (Gabor series)

$$
f(t)=\sum_{m, n=-\infty}^{\infty} c_{m, n} e^{2 \pi i a m t} g(t-b n)
$$

One of the most important applications: AD conversion for signal transmission:

$$
f \mapsto\left\{c_{m, n}\right\} \mapsto \tilde{f}
$$

Q : When such expansion exists and possesses "good properties"? "Good properties" $=$ There are constants $0<c<C<\infty$ such that frame property holds

$$
c \int_{-\infty}^{\infty}|f(t)|^{2} d t<\sum_{m, n}\left|c_{m, n}\right|^{2}<C \int_{-\infty}^{\infty}|f(t)|^{2} d t
$$

First results:

Idea: Density of the lattice i.e. $(a b)^{-1}$ is responsible for the frame property

First results:

Idea: Density of the lattice i.e. $(a b)^{-1}$ is responsible for the frame property

$$
\text { Let } g(t)=e^{-t^{2} / 2} \text {. }
$$

fon Neiman: (middle of 30th): No chances to have good expansions if $a b>1$

First results:

Idea: Density of the lattice i.e. $(a b)^{-1}$ is responsible for the frame property

$$
\text { Let } g(t)=e^{-t^{2} / 2}
$$

fon Neiman: (middle of 30th): No chances to have good expansions if $a b>1$

Seip (1992), L. (1992) each $a b<1$ provides the frame property !

First results:

Idea: Density of the lattice i.e. $(a b)^{-1}$ is responsible for the frame property

$$
\text { Let } g(t)=e^{-t^{2} / 2}
$$

fon Neiman: (middle of 30th): No chances to have good expansions if $a b>1$
Seip (1992), L. (1992) each $a b<1$ provides the frame property ! Techniques: heavy complex analysis ! Idea of density: if we know a holomorphic function in a sufficiently dense set of points, we can reconstruct/ estimate it.

Why complex analysis ?

There is a Fock space of entire functions:

$$
\begin{gathered}
\mathcal{F}=\{F \text { analytic in the whole complex plane } \mathbb{C} \text { and } \\
\left.\|F\|^{2}=\int_{\mathbb{C}}|F(z)|^{2} e^{-\pi|z|^{2}} d x d y<\infty\right\}
\end{gathered}
$$

Fact Frame property for the system $\left\{e^{2 \pi i a n t} g(t-b n)\right\}_{n, m=-\infty}^{\infty} \Leftrightarrow$ Sampling property for the lattice $\{a m+i b n\}_{m, n=-\infty}^{\infty}$ in \mathcal{F}, i.e. for some $0<c, C<\infty$

$$
c\|F\|^{2}<\sum|F(a m+i b n)|^{2} e^{-\pi\left(a^{2} m^{2}+b^{2} n^{2}\right)}<C\|F\|^{2}, F \in \mathcal{F} .
$$

Sampling theory for Fock type spaced of entire functions (Ortega-Cerda/Seip, Massaneda/Marko/Ortega-Cerda) Ortega-Cerda/Seip (2002): Description of all exponential frames in $L^{2}(-\pi, \pi)$.

Numerical stability

Numerical stability

Q: Let $a b<1$ (we have frame property). How does condition number $\kappa(a b)$ deteriorate as $a b \nearrow 1$?

Numerical stability

Q: Let $a b<1$ (we have frame property). How does condition number $\kappa(a b)$ deteriorate as $a b \nearrow 1$?
Numerical results: Strohmer (Univ, of Califormia, Davis).

Numerical stability

Q: Let $a b<1$ (we have frame property). How does condition number $\kappa(a b)$ deteriorate as $a b \nearrow 1$?
Numerical results: Strohmer (Univ. of Califormia, Davis). Precise result (Borichev, Groechenig, L (2009):

$$
\kappa(a b) \sim \frac{1}{1-a b}
$$

Techniques ? Again complex analysis: atomization techniques i.e. approximation of a potential of some measure by a discrete potential (L./ Malinnikova, 2001), (Ortega-Cerda, 2002)

It were romantic years in 1990th

It were romantic years in 1990th

We hoped:
each "good" generator $g(t)$ gives a stable music score for $a b<1$.

It were romantic years in 1990th

We hoped:
each "good" generator $g(t)$ gives a stable music score for $a b<1$. Up to now just two such generators are known (Janssen, Strohmer):

$$
g(t)=e^{-|t|}, \text { and } g(t)=\frac{1}{\cosh t}
$$

It were romantic years in 1990th

We hoped:
each "good" generator $g(t)$ gives a stable music score for $a b<1$. Up to now just two such generators are known (Janssen, Strohmer):

$$
g(t)=e^{-|t|}, \text { and } g(t)=\frac{1}{\cosh t}
$$

Perhaps something is wrong with complex analysis ?

Ascenzi, Bruna (2006): The only generator which leads one to space of holomorphic function is the Gaussian $g(t)=e^{-t^{2} / 2}$.

Yurii Lyubarskii Norwegian University of Sciences and Technol Time-frequency Analysis meets Complex Analysis

Fernandez, Galbis (2009):It is possible to give sufficient conditions on a discrete set $\left\{\mu_{n}+i \nu_{n}\right\}_{n=1}^{\infty}$ in the complex plane such that for each "good" generator g we have for $f \in L^{2}$

$$
\left\langle f, e^{2 \pi i \mu_{n} t} g\left(t-\nu_{n}\right)\right\rangle=0 \Rightarrow f=0
$$

This is uniqueness, the first step toward frame property.

Fernandez, Galbis (2009):It is possible to give sufficient conditions on a discrete set $\left\{\mu_{n}+i \nu_{n}\right\}_{n=1}^{\infty}$ in the complex plane such that for each "good" generator g we have for $f \in L^{2}$

$$
\left\langle f, e^{2 \pi i \mu_{n} t} g\left(t-\nu_{n}\right)\right\rangle=0 \Rightarrow f=0
$$

This is uniqueness, the first step toward frame property. This condition is given in terms of density.

Fernandez, Galbis (2009):It is possible to give sufficient conditions on a discrete set $\left\{\mu_{n}+i \nu_{n}\right\}_{n=1}^{\infty}$ in the complex plane such that for each "good" generator g we have for $f \in L^{2}$

$$
\left\langle f, e^{2 \pi i \mu_{n} t} g\left(t-\nu_{n}\right)\right\rangle=0 \Rightarrow f=0
$$

This is uniqueness, the first step toward frame property. This condition is given in terms of density.
Type of problem: uniqueness and sampling theorems in spaces with reproducing kernels.

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.
The natural choice (due to time-frequency motivations) $g_{0}(t)=e^{-t^{2} / 2}, g_{1}(t)=t e^{-t^{2} / 2}$.

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.
The natural choice (due to time-frequency motivations) $g_{0}(t)=e^{-t^{2} / 2}, g_{1}(t)=t e^{-t^{2} / 2}$.
The natural answer: frame property $\Leftrightarrow a b<1 / 2$.

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.
The natural choice (due to time-frequency motivations) $g_{0}(t)=e^{-t^{2} / 2}, g_{1}(t)=t e^{-t^{2} / 2}$.
The natural answer: frame property $\Leftrightarrow a b<1 / 2$.
BUT

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.
The natural choice (due to time-frequency motivations) $g_{0}(t)=e^{-t^{2} / 2}, g_{1}(t)=t e^{-t^{2} / 2}$.
The natural answer: frame property $\Leftrightarrow a b<1 / 2$.

BUT

One-dimensional surprise: if $g(t)=t e^{-t^{2} / 2}$ then the system $\left\{e^{2 \pi i a n t} g(t-b n)\right\}_{n, m=-\infty}^{\infty}$ is not a frame for $a b=1 / 2$!

Groechenig, L (2009): Multichannel signals: the generator is a vector-function. $\mathbf{g}(t)=\left(g_{0}(t), g_{1}(t)\right)$.
The natural choice (due to time-frequency motivations) $g_{0}(t)=e^{-t^{2} / 2}, g_{1}(t)=t e^{-t^{2} / 2}$.
The natural answer: frame property $\Leftrightarrow a b<1 / 2$.

BUT

One-dimensional surprise: if $g(t)=t e^{-t^{2} / 2}$ then the system $\left\{e^{2 \pi i a n t} g(t-b n)\right\}_{n, m=-\infty}^{\infty}$ is not a frame for $a b=1 / 2$!
The corresponding problem for functions from the Fock space involves expression of the form

$$
F^{\prime}\left(\lambda_{m, n}\right)-\pi \bar{\lambda}_{m, n} F\left(\lambda_{m, n}\right), \lambda_{m, n}=a m+i b n
$$

instead of just $F\left(\lambda_{m, n}\right)$.
This changes the situation drastically !

Perhaps

Yurii Lyubarskii Norwegian University of Sciences and Technol Time-frequency Analysis meets Complex Analysis

Perhaps

Ascenzi, Bruna (2006): The only generator which leads one in the standard way to the classical problems in spaces of holomorphic function is the Gaussian $g(t)=e^{-t^{2} / 2}$.

