
Fluctuations and 
energetics in small systems

Juan MR Parrondo
Dep. Física Atómica, Molecular y Nuclear

Grupo Interdisciplinar de Sistemas Complejos (GISC)
Universidad Complutense de Madrid

•Fluctuations and work: two examples.
•Irreversibility and dissipation.
•GISC activities.



Brownian motors
The flashing ratchet

Uon

Current

Uoff

 0

Uon

A Brownian  particle in a
flashing asymmetric potential

Ajdari and Prost, 1992

http://www.elmer.unibas.ch/bm/index.htmlSimulation:

http://www.elmer.unibas.ch/bm/index.html
http://www.elmer.unibas.ch/bm/index.html


Paradoxical games
The flashing ratchet
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Fluctuations and work

Crooks theorem

Unzipping experiments 

 

Biomolecules (e.g. RNA, DNA or proteins) 

stretched under force are excellent models to 

explore the non-equilibrium physics of small 

systems. The great versatility of DNA 

synthesis together with its high molecular 

stability makes it an ideal system to work with. 

DNA hairpins or helices (see figure 1) are 

among the simplest DNA structures important 

in many biological processes. They are formed 

of a stable DNA double helix (stem) ended by a 

loop. The formation of the loop costs bending 

and twisting energy and involves an important 

decrease in entropy. Yet, the large stability of 

the stem makes the whole structure 

thermodynamically stable. The number of base 

pairs in the double helix and the size of the loop 

are parameters that we can control. This allows 

us to design DNA molecules with specific 

thermodynamic and kinetic properties.  

 

In unzipping experiments, a DNA hairpin is 

converted into a single DNA strand by pulling 

apart the two chains of the double helix from 

the same end [6]. Unzipping occurs at a pulling 

force around 15 pN, which is the force required 

to overcome the hybridization forces that bind 

the two complementary strands of the double 

helix. When unzipping long DNA hairpins (a 

few hundreds of base pairs) at a constant speed 

a force-distance curve (FDC) with the shape of 

a sawtooth pattern is observed (fig. 2a) [7]. At 

each force rip some base pairs are released and 

the DNA hairpin becomes progressively 

opened, until it totally unfolds.   

In short hairpins (a few tens of base pairs) a 

single rip is often observed revealing a two-

states behavior: at low forces the molecule is in 

its native state, while at high forces the 

unfolded and stretched state becomes 

thermodynamically stable (fig. 2b) [8]. The 

rupture process is thermally activated 

(stochastic), so the value at which the hairpin 

unfolds changes at each unzipping experiment 

under the effect of thermal fluctuations (fig 2c). 

Once the molecule is in the unfolded state, we 

can recover the native structure by releasing the 

force applied to the system. The latter process 

is called zipping. 

 

 

Optical Tweezers and Single Molecule Experiments 
 

Optical tweezers allow us to manipulate tiny objects with sub-nanometer resolution and to exert 

mechanical forces in the picoNewton range. By optically trapping micron-sized beads it is possible to 

grab and pull biomolecules that are a thousand times smaller than the beads [9]. 

Molecular biology tools are employed to insert the 

tiny molecules between molecular handles.  The large 

complex formed by the handles and the molecule is 

then tethered between two micron-sized 

polystyrene or silica beads that provide the required 

free space to avoid spurious interactions between 

the molecule under study and the beads.  

One bead is captured in the optical trap, while the 

other is immobilized by air suction on the tip of a 

micropipette (see figure). The bead in the optical trap feels an attractive force   

! 

r 
f  towards the center of 

the trap. This force is then transmitted to the molecular system formed by handles and biomolecules in 

mechanical equilibrium. Handles act as force transducers and should preferably be rigid in order to 

increase the signal to noise ratio. 

Collin et al, Nature 2005



Information theory

�W � − ∆G = kBT

�
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D(PU (W )||PR(−W ))

}
Kullbak-Leibler distance

or relative entropy

�W � −∆G = kBTD(pforward||pbackward) ≤ kBTD(p̃forward||p̃backward)

(Kawai, Parrondo, van den Broeck, PRL 2007)



Relative entropy: a measure of 
indistinguishability

OR ? 5,7,12,9,6,2,5,2,9,2,12,8,10,4,…

D(     ||     )= 0.185
D(     ||     )= 0.220

Stein’s Lemma:

the probability of incorrectly guessing p from n data actually distributed as q is 
(asympt.):

We need approximately 5 data to distinguish between dice and lottery with an error 1/2



Estimating dissipation

The value of the coefficient !XX could be estimated from the
Brownian motion of a free fiber’s tip. The coefficient !!X,
however, was more difficult to determine. We assumed for
simplicity that the two coefficients were equal: !!X " ! # !XX.
Eq. 12 is then identical to Eq. 6.

Results
Spontaneous Hair-Bundle Oscillations. When bathed in artificial
endolymph, many of the $2,500 hair bundles in the sensory
epithelium of the bullfrog’s sacculus oscillated spontaneously.
As reported by the motion of a flexible fiber attached to the top
of an oscillating hair bundle, the motion consisted of alternating
slow components followed by fast strokes in the opposite direc-
tion (Fig. 1A). The probability distribution of the bundle’s
position was bimodal, with a local minimum near X % 0 (Fig.
1B). This distribution resembles that observed for sound pres-
sure at the frequency of an SOAE from the human ear (28).

Hair-bundle movements fluctuated both in amplitude and in
phase. To characterize these fluctuations, we computed the
autocorrelation function C(t) % &X(t)X(0)' and its Fourier
transform, C̃("), which defines the spectral density of bundle
motion at each frequency # % "!(2$). The spectral density
peaked at a nonzero frequency, here #0 % 8 Hz (Fig. 1C). The
width of the function at half its maximal value, !#0 % 2.8 Hz,
describes the frequency fluctuations around #0, which reflect a
loss in phase coherence of the bundle oscillation. This property
is clearly illustrated by the autocorrelation function (Fig. 1D):

C(t) assumes the form of a damped oscillation that decays
toward zero with a correlation time % % 1!($!#0), 115 ms in this
example.

Active vs. Passive Systems: The Fluctuation–Dissipation Theorem. Are
these properties alone sufficient to determine whether sponta-
neous hair-bundle oscillations are generated by an active pro-
cess? Stochastic displacements similar to those observed could in
principle occur at equilibrium in a system buffeted by thermal
forces. A definitive proof that the observed oscillation is active
must invoke the breakdown of a general thermodynamic prin-
ciple (29). The fluctuation–dissipation theorem (FDT) provides
a useful instance of such a principle that assumes no physical
properties of the system under investigation other than thermal
equilibrium. The theorem asserts that the autocorrelation func-
tion of a passive system is directly related to the system’s linear
responsiveness &(t) to small external forces. The relation may be
written for t ( 0 as

&)t* ' +
1

kBT
dC)t*

dt , [14]

in which kB is the Boltzmann constant and T the temperature
(reviewed in ref. 30).

The Fourier representation of Eq. 14 leads to

C̃)"* ' 2kBT
&̃,)"*

"
. [15]

Fig. 1. Properties of spontaneous oscillations at $8 Hz by a hair bundle from the sacculus of the bullfrog’s inner ear. (A) Monitoring the position of a glass
fiber attached at the hair bundle’s top measured the bundle’s spontaneous movement. This oscillation had a root–mean–square magnitude of 28 nm. The data
were smoothed by forming the running average of a number of points equal to one-fifth of a cycle, and drift in the baseline was subtracted. (B) The probability
distribution of bundle positions was bimodal, with a local minimum near the bundle’s mean position. This histogram is asymmetrical; the bundle spent more
time during negative than positive deflections. (C) The signal’s spectrum displayed a broad peak and was fitted by Eq. 21 (smooth curve). We found D ' 0.14
pN2!s, ( % 9 )N!s!m+1, k ' 80 )N!m+1, and #0 % "0!(2$) % 8 Hz; the ratio (!k ' 115 ms characterized the correlation time of the bundle’s movements. To obtain
the spectrum, we averaged the spectral densities computed from 15 measurements of bundle oscillations, each 2 s in length. The resulting spectrum was further
smoothed by forming the running average of the number of points sampling a 1-Hz frequency band. The error bars specify standard deviations from these mean
values. (D) The autocorrelation function of bundle motion, obtained as the inverse Fourier transform of the spectral density, revealed an average oscillation
frequency of $8 Hz. The signal’s envelope, which relaxed towards zero with an exponential time constant of 115 ms, reflected the period over which the
oscillation’s phase lost coherence. Analog signals were sampled at a frequency of 2.5 kHz. B, C, and D derive from the data shown in A.

14382 " www.pnas.org!cgi!doi!10.1073!pnas.251530598 Martin et al.

Thevalueofthecoefficient!XXcouldbeestimatedfromthe
Brownianmotionofafreefiber’stip.Thecoefficient!!X,
however,wasmoredifficulttodetermine.Weassumedfor
simplicitythatthetwocoefficientswereequal:!!X"!#!XX.
Eq.12isthenidenticaltoEq.6.

Results
SpontaneousHair-BundleOscillations.Whenbathedinartificial
endolymph,manyofthe$2,500hairbundlesinthesensory
epitheliumofthebullfrog’ssacculusoscillatedspontaneously.
Asreportedbythemotionofaflexiblefiberattachedtothetop
ofanoscillatinghairbundle,themotionconsistedofalternating
slowcomponentsfollowedbyfaststrokesintheoppositedirec-
tion(Fig.1A).Theprobabilitydistributionofthebundle’s
positionwasbimodal,withalocalminimumnearX%0(Fig.
1B).Thisdistributionresemblesthatobservedforsoundpres-
sureatthefrequencyofanSOAEfromthehumanear(28).

Hair-bundlemovementsfluctuatedbothinamplitudeandin
phase.Tocharacterizethesefluctuations,wecomputedthe
autocorrelationfunctionC(t)%&X(t)X(0)'anditsFourier
transform,C̃("),whichdefinesthespectraldensityofbundle
motionateachfrequency#%"!(2$).Thespectraldensity
peakedatanonzerofrequency,here#0%8Hz(Fig.1C).The
widthofthefunctionathalfitsmaximalvalue,!#0%2.8Hz,
describesthefrequencyfluctuationsaround#0,whichreflecta
lossinphasecoherenceofthebundleoscillation.Thisproperty
isclearlyillustratedbytheautocorrelationfunction(Fig.1D):

C(t)assumestheformofadampedoscillationthatdecays
towardzerowithacorrelationtime%%1!($!#0),115msinthis
example.

Activevs.PassiveSystems:TheFluctuation–DissipationTheorem.Are
thesepropertiesalonesufficienttodeterminewhethersponta-
neoushair-bundleoscillationsaregeneratedbyanactivepro-
cess?Stochasticdisplacementssimilartothoseobservedcouldin
principleoccuratequilibriuminasystembuffetedbythermal
forces.Adefinitiveproofthattheobservedoscillationisactive
mustinvokethebreakdownofageneralthermodynamicprin-
ciple(29).Thefluctuation–dissipationtheorem(FDT)provides
ausefulinstanceofsuchaprinciplethatassumesnophysical
propertiesofthesystemunderinvestigationotherthanthermal
equilibrium.Thetheoremassertsthattheautocorrelationfunc-
tionofapassivesystemisdirectlyrelatedtothesystem’slinear
responsiveness&(t)tosmallexternalforces.Therelationmaybe
writtenfort(0as

&)t*'+
1

kBT
dC)t*

dt,[14]

inwhichkBistheBoltzmannconstantandTthetemperature
(reviewedinref.30).

TheFourierrepresentationofEq.14leadsto

C̃)"*'2kBT
&̃,)"*

"
.[15]

Fig.1.Propertiesofspontaneousoscillationsat$8Hzbyahairbundlefromthesacculusofthebullfrog’sinnerear.(A)Monitoringthepositionofaglass
fiberattachedatthehairbundle’stopmeasuredthebundle’sspontaneousmovement.Thisoscillationhadaroot–mean–squaremagnitudeof28nm.Thedata
weresmoothedbyformingtherunningaverageofanumberofpointsequaltoone-fifthofacycle,anddriftinthebaselinewassubtracted.(B)Theprobability
distributionofbundlepositionswasbimodal,withalocalminimumnearthebundle’smeanposition.Thishistogramisasymmetrical;thebundlespentmore
timeduringnegativethanpositivedeflections.(C)Thesignal’sspectrumdisplayedabroadpeakandwasfittedbyEq.21(smoothcurve).WefoundD'0.14
pN2!s,(%9)N!s!m+1,k'80)N!m+1,and#0%"0!(2$)%8Hz;theratio(!k'115mscharacterizedthecorrelationtimeofthebundle’smovements.Toobtain
thespectrum,weaveragedthespectraldensitiescomputedfrom15measurementsofbundleoscillations,each2sinlength.Theresultingspectrumwasfurther
smoothedbyformingtherunningaverageofthenumberofpointssamplinga1-Hzfrequencyband.Theerrorbarsspecifystandarddeviationsfromthesemean
values.(D)Theautocorrelationfunctionofbundlemotion,obtainedastheinverseFouriertransformofthespectraldensity,revealedanaverageoscillation
frequencyof$8Hz.Thesignal’senvelope,whichrelaxedtowardszerowithanexponentialtimeconstantof115ms,reflectedtheperiodoverwhichthe
oscillation’sphaselostcoherence.Analogsignalsweresampledatafrequencyof2.5kHz.B,C,andDderivefromthedatashowninA.

14382"www.pnas.org!cgi!doi!10.1073!pnas.251530598Martinetal.

IrreversibilityDissipation
(entropy production)

} }
Physics Information theory

�W � −∆G

kBT
= D(pforward||pbackward) ≤ D(p̃forward||p̃backward)



Detecting active processes

the effective temperature obtained from the autocorrelation and
the response function satisfied TEFF(!)!T " 1 for all observed
frequencies (Fig. 3C). The spontaneous movements of this hair
bundle were therefore thermal fluctuations.

Discussion
Violation of the FDT by an oscillating hair bundle demonstrates
that both the hair bundle’s spontaneous motion and its response
to sinusoidal stimulation are active phenomena, governed by a
process that requires a cellular energy source and that can do
work. The observation that hair-bundle oscillations are not
phase-coherent indicates that fluctuations play an important
role in this process. The observed autocorrelation function does
not reveal specific properties of the active process. The linear
response function, however, provides insight into the underlying
mechanism. The imaginary part of the response function crossed
zero near the spontaneous oscillation frequency, whereas the
real part remained positive at all frequencies. Only a certain class

of active oscillators exhibits this behavior. In particular, the van
der Pol oscillator, a standard model that generates spontaneous
oscillations by introducing negative friction, behaves differently.
In this case, the real part of the corresponding response function
crosses zero, whereas the imaginary part does not change sign.
Our observations thus rule out the hypothesis (5) that the active
process generates a force proportional to velocity, which negates
friction.

Model for Noisy Oscillations. We may describe the linear behavior
of hair-bundle deflections by the equation

"
dX!t"

dt # #kX!t" $ FA!t" $ f!t" $ %X!t", [18]

in which " is an effective drag coefficient, k an effective stiffness,
and f(t) an external force. An active process within the hair
bundle generates the force FA(t). As discussed below, FA(t)
obeys the relation

&
dFA!t"

dt # #k!X!t" ' FA!t" $ %A!t". [19]

Here & is the relaxation time of the active process and the
stiffness k! characterizes the coupling of active elements to
hair-bundle displacements. The random forces, %X(t) and %A(t),
account for the effect of fluctuations on the bundle position and
the active process, respectively.

We fitted the response functions calculated from this model to
the experimentally measured linear response functions (Fig. 2).
This fit yielded & $ "!k, a result that suggests that the hair
bundle’s position relaxes with a time constant similar to that of
the bundle’s force-producing elements. If we impose the condi-
tion that & % "!k, the linear response function assumes the form

(̃!!" #
1!2

i"!!0 ' !" $ k $
1!2

#i"!!0 $ !" $ k , [20]

in which !0 % (kk! )1/2!" is the angular frequency of oscillation.
Furthermore, the autocorrelation function of spontaneous dis-
placements in this simple model obeys the relation

C̃!!" #
D

k2 $ "2!! ' !0"
2 $

D
k2 $ "2!! $ !0"

2 , [21]

in which we have assumed symmetrical, )-correlated noise:
&%X(t)%X(0)' % &%A(t)%A(0)' % 2D)(t). The correlation time of
the oscillation is thus * % & % "!k. For ! ( 0 and !0 (( *#1,
we may ignore the final terms of Eqs. 21 and 22 and approximate
the effective temperature as

TEFF!!"

T "
D

"kBT # !

! ' !0
$. [22]

This model is in qualitative agreement with the data. In
particular, TEFF(!)!T diverges and changes sign when ! $ !0
(Fig. 3). Also as observed, TEFF(!)!T reaches a constant value
at high frequencies. Near the frequency of spontaneous oscil-
lation for the active hair bundle, the fit of the response function
by Eq. 20 yields an effective bundle stiffness of k $ 100 +N!m#1.
As a result of the active process, this bundle appears to be almost
one order of magnitude more compliant, and therefore more
responsive, than the passive bundle. Probably because active
elements within the oscillatory bundle create internal friction,
the bundle’s effective drag coefficient is " $ 6.6 +N!s!m#1, about
thrice that of the passive bundle. These parameter values yield
a relaxation time of * % "!k $ 65 ms. The elastic coupling
between force-generating elements and the hair-bundle position

Fig. 3. The effective temperature of spontaneous hair-bundle motion. (A)
For the oscillatory bundle of Figs. 1 and 2, the inverse of the effective
temperature, normalized by the actual temperature, T!TEFF(!), crossed zero
near the bundle’s frequency of spontaneous oscillation. This ratio deviated
strikingly at all frequencies from the value of unity indicative of passive
motion and thus violated the FDT. (B) A plot of the normalized effective
temperature, TEFF(!)!T, exhibits a divergence corresponding to the crossing of
the abscissa in A. The smooth lines correspond to a fit to the data by Eq. 22. (C)
For the control hair bundle whose response function is shown by open symbols
in Fig. 2, the normalized effective temperature TEFF(!)!T remained near unity
throughout the range of frequencies. This behavior, which satisfies the FDT,
demonstrated that the hair bundle was passive and that its fluctuations
resulted from thermal bombardment.

14384 % www.pnas.org!cgi!doi!10.1073!pnas.251530598 Martin et al.
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Spontaneous fluctuationsLinear response
The value of the coefficient !XX could be estimated from the

Brownian motion of a free fiber’s tip. The coefficient !!X,
however, was more difficult to determine. We assumed for
simplicity that the two coefficients were equal: !!X " ! # !XX.
Eq. 12 is then identical to Eq. 6.

Results
Spontaneous Hair-Bundle Oscillations. When bathed in artificial
endolymph, many of the $2,500 hair bundles in the sensory
epithelium of the bullfrog’s sacculus oscillated spontaneously.
As reported by the motion of a flexible fiber attached to the top
of an oscillating hair bundle, the motion consisted of alternating
slow components followed by fast strokes in the opposite direc-
tion (Fig. 1A). The probability distribution of the bundle’s
position was bimodal, with a local minimum near X % 0 (Fig.
1B). This distribution resembles that observed for sound pres-
sure at the frequency of an SOAE from the human ear (28).

Hair-bundle movements fluctuated both in amplitude and in
phase. To characterize these fluctuations, we computed the
autocorrelation function C(t) % &X(t)X(0)' and its Fourier
transform, C̃("), which defines the spectral density of bundle
motion at each frequency # % "!(2$). The spectral density
peaked at a nonzero frequency, here #0 % 8 Hz (Fig. 1C). The
width of the function at half its maximal value, !#0 % 2.8 Hz,
describes the frequency fluctuations around #0, which reflect a
loss in phase coherence of the bundle oscillation. This property
is clearly illustrated by the autocorrelation function (Fig. 1D):

C(t) assumes the form of a damped oscillation that decays
toward zero with a correlation time % % 1!($!#0), 115 ms in this
example.

Active vs. Passive Systems: The Fluctuation–Dissipation Theorem. Are
these properties alone sufficient to determine whether sponta-
neous hair-bundle oscillations are generated by an active pro-
cess? Stochastic displacements similar to those observed could in
principle occur at equilibrium in a system buffeted by thermal
forces. A definitive proof that the observed oscillation is active
must invoke the breakdown of a general thermodynamic prin-
ciple (29). The fluctuation–dissipation theorem (FDT) provides
a useful instance of such a principle that assumes no physical
properties of the system under investigation other than thermal
equilibrium. The theorem asserts that the autocorrelation func-
tion of a passive system is directly related to the system’s linear
responsiveness &(t) to small external forces. The relation may be
written for t ( 0 as

&)t* ' +
1

kBT
dC)t*

dt , [14]

in which kB is the Boltzmann constant and T the temperature
(reviewed in ref. 30).

The Fourier representation of Eq. 14 leads to

C̃)"* ' 2kBT
&̃,)"*

"
. [15]

Fig. 1. Properties of spontaneous oscillations at $8 Hz by a hair bundle from the sacculus of the bullfrog’s inner ear. (A) Monitoring the position of a glass
fiber attached at the hair bundle’s top measured the bundle’s spontaneous movement. This oscillation had a root–mean–square magnitude of 28 nm. The data
were smoothed by forming the running average of a number of points equal to one-fifth of a cycle, and drift in the baseline was subtracted. (B) The probability
distribution of bundle positions was bimodal, with a local minimum near the bundle’s mean position. This histogram is asymmetrical; the bundle spent more
time during negative than positive deflections. (C) The signal’s spectrum displayed a broad peak and was fitted by Eq. 21 (smooth curve). We found D ' 0.14
pN2!s, ( % 9 )N!s!m+1, k ' 80 )N!m+1, and #0 % "0!(2$) % 8 Hz; the ratio (!k ' 115 ms characterized the correlation time of the bundle’s movements. To obtain
the spectrum, we averaged the spectral densities computed from 15 measurements of bundle oscillations, each 2 s in length. The resulting spectrum was further
smoothed by forming the running average of the number of points sampling a 1-Hz frequency band. The error bars specify standard deviations from these mean
values. (D) The autocorrelation function of bundle motion, obtained as the inverse Fourier transform of the spectral density, revealed an average oscillation
frequency of $8 Hz. The signal’s envelope, which relaxed towards zero with an exponential time constant of 115 ms, reflected the period over which the
oscillation’s phase lost coherence. Analog signals were sampled at a frequency of 2.5 kHz. B, C, and D derive from the data shown in A.
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Estimating dissipation

The value of the coefficient !XX could be estimated from the
Brownian motion of a free fiber’s tip. The coefficient !!X,
however, was more difficult to determine. We assumed for
simplicity that the two coefficients were equal: !!X " ! # !XX.
Eq. 12 is then identical to Eq. 6.

Results
Spontaneous Hair-Bundle Oscillations. When bathed in artificial
endolymph, many of the $2,500 hair bundles in the sensory
epithelium of the bullfrog’s sacculus oscillated spontaneously.
As reported by the motion of a flexible fiber attached to the top
of an oscillating hair bundle, the motion consisted of alternating
slow components followed by fast strokes in the opposite direc-
tion (Fig. 1A). The probability distribution of the bundle’s
position was bimodal, with a local minimum near X % 0 (Fig.
1B). This distribution resembles that observed for sound pres-
sure at the frequency of an SOAE from the human ear (28).

Hair-bundle movements fluctuated both in amplitude and in
phase. To characterize these fluctuations, we computed the
autocorrelation function C(t) % &X(t)X(0)' and its Fourier
transform, C̃("), which defines the spectral density of bundle
motion at each frequency # % "!(2$). The spectral density
peaked at a nonzero frequency, here #0 % 8 Hz (Fig. 1C). The
width of the function at half its maximal value, !#0 % 2.8 Hz,
describes the frequency fluctuations around #0, which reflect a
loss in phase coherence of the bundle oscillation. This property
is clearly illustrated by the autocorrelation function (Fig. 1D):

C(t) assumes the form of a damped oscillation that decays
toward zero with a correlation time % % 1!($!#0), 115 ms in this
example.

Active vs. Passive Systems: The Fluctuation–Dissipation Theorem. Are
these properties alone sufficient to determine whether sponta-
neous hair-bundle oscillations are generated by an active pro-
cess? Stochastic displacements similar to those observed could in
principle occur at equilibrium in a system buffeted by thermal
forces. A definitive proof that the observed oscillation is active
must invoke the breakdown of a general thermodynamic prin-
ciple (29). The fluctuation–dissipation theorem (FDT) provides
a useful instance of such a principle that assumes no physical
properties of the system under investigation other than thermal
equilibrium. The theorem asserts that the autocorrelation func-
tion of a passive system is directly related to the system’s linear
responsiveness &(t) to small external forces. The relation may be
written for t ( 0 as

&)t* ' +
1

kBT
dC)t*

dt , [14]

in which kB is the Boltzmann constant and T the temperature
(reviewed in ref. 30).

The Fourier representation of Eq. 14 leads to

C̃)"* ' 2kBT
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. [15]

Fig. 1. Properties of spontaneous oscillations at $8 Hz by a hair bundle from the sacculus of the bullfrog’s inner ear. (A) Monitoring the position of a glass
fiber attached at the hair bundle’s top measured the bundle’s spontaneous movement. This oscillation had a root–mean–square magnitude of 28 nm. The data
were smoothed by forming the running average of a number of points equal to one-fifth of a cycle, and drift in the baseline was subtracted. (B) The probability
distribution of bundle positions was bimodal, with a local minimum near the bundle’s mean position. This histogram is asymmetrical; the bundle spent more
time during negative than positive deflections. (C) The signal’s spectrum displayed a broad peak and was fitted by Eq. 21 (smooth curve). We found D ' 0.14
pN2!s, ( % 9 )N!s!m+1, k ' 80 )N!m+1, and #0 % "0!(2$) % 8 Hz; the ratio (!k ' 115 ms characterized the correlation time of the bundle’s movements. To obtain
the spectrum, we averaged the spectral densities computed from 15 measurements of bundle oscillations, each 2 s in length. The resulting spectrum was further
smoothed by forming the running average of the number of points sampling a 1-Hz frequency band. The error bars specify standard deviations from these mean
values. (D) The autocorrelation function of bundle motion, obtained as the inverse Fourier transform of the spectral density, revealed an average oscillation
frequency of $8 Hz. The signal’s envelope, which relaxed towards zero with an exponential time constant of 115 ms, reflected the period over which the
oscillation’s phase lost coherence. Analog signals were sampled at a frequency of 2.5 kHz. B, C, and D derive from the data shown in A.
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Thevalueofthecoefficient!XXcouldbeestimatedfromthe
Brownianmotionofafreefiber’stip.Thecoefficient!!X,
however,wasmoredifficulttodetermine.Weassumedfor
simplicitythatthetwocoefficientswereequal:!!X"!#!XX.
Eq.12isthenidenticaltoEq.6.

Results
SpontaneousHair-BundleOscillations.Whenbathedinartificial
endolymph,manyofthe$2,500hairbundlesinthesensory
epitheliumofthebullfrog’ssacculusoscillatedspontaneously.
Asreportedbythemotionofaflexiblefiberattachedtothetop
ofanoscillatinghairbundle,themotionconsistedofalternating
slowcomponentsfollowedbyfaststrokesintheoppositedirec-
tion(Fig.1A).Theprobabilitydistributionofthebundle’s
positionwasbimodal,withalocalminimumnearX%0(Fig.
1B).Thisdistributionresemblesthatobservedforsoundpres-
sureatthefrequencyofanSOAEfromthehumanear(28).

Hair-bundlemovementsfluctuatedbothinamplitudeandin
phase.Tocharacterizethesefluctuations,wecomputedthe
autocorrelationfunctionC(t)%&X(t)X(0)'anditsFourier
transform,C̃("),whichdefinesthespectraldensityofbundle
motionateachfrequency#%"!(2$).Thespectraldensity
peakedatanonzerofrequency,here#0%8Hz(Fig.1C).The
widthofthefunctionathalfitsmaximalvalue,!#0%2.8Hz,
describesthefrequencyfluctuationsaround#0,whichreflecta
lossinphasecoherenceofthebundleoscillation.Thisproperty
isclearlyillustratedbytheautocorrelationfunction(Fig.1D):

C(t)assumestheformofadampedoscillationthatdecays
towardzerowithacorrelationtime%%1!($!#0),115msinthis
example.

Activevs.PassiveSystems:TheFluctuation–DissipationTheorem.Are
thesepropertiesalonesufficienttodeterminewhethersponta-
neoushair-bundleoscillationsaregeneratedbyanactivepro-
cess?Stochasticdisplacementssimilartothoseobservedcouldin
principleoccuratequilibriuminasystembuffetedbythermal
forces.Adefinitiveproofthattheobservedoscillationisactive
mustinvokethebreakdownofageneralthermodynamicprin-
ciple(29).Thefluctuation–dissipationtheorem(FDT)provides
ausefulinstanceofsuchaprinciplethatassumesnophysical
propertiesofthesystemunderinvestigationotherthanthermal
equilibrium.Thetheoremassertsthattheautocorrelationfunc-
tionofapassivesystemisdirectlyrelatedtothesystem’slinear
responsiveness&(t)tosmallexternalforces.Therelationmaybe
writtenfort(0as

&)t*'+
1

kBT
dC)t*

dt,[14]

inwhichkBistheBoltzmannconstantandTthetemperature
(reviewedinref.30).

TheFourierrepresentationofEq.14leadsto

C̃)"*'2kBT
&̃,)"*

"
.[15]

Fig.1.Propertiesofspontaneousoscillationsat$8Hzbyahairbundlefromthesacculusofthebullfrog’sinnerear.(A)Monitoringthepositionofaglass
fiberattachedatthehairbundle’stopmeasuredthebundle’sspontaneousmovement.Thisoscillationhadaroot–mean–squaremagnitudeof28nm.Thedata
weresmoothedbyformingtherunningaverageofanumberofpointsequaltoone-fifthofacycle,anddriftinthebaselinewassubtracted.(B)Theprobability
distributionofbundlepositionswasbimodal,withalocalminimumnearthebundle’smeanposition.Thishistogramisasymmetrical;thebundlespentmore
timeduringnegativethanpositivedeflections.(C)Thesignal’sspectrumdisplayedabroadpeakandwasfittedbyEq.21(smoothcurve).WefoundD'0.14
pN2!s,(%9)N!s!m+1,k'80)N!m+1,and#0%"0!(2$)%8Hz;theratio(!k'115mscharacterizedthecorrelationtimeofthebundle’smovements.Toobtain
thespectrum,weaveragedthespectraldensitiescomputedfrom15measurementsofbundleoscillations,each2sinlength.Theresultingspectrumwasfurther
smoothedbyformingtherunningaverageofthenumberofpointssamplinga1-Hzfrequencyband.Theerrorbarsspecifystandarddeviationsfromthesemean
values.(D)Theautocorrelationfunctionofbundlemotion,obtainedastheinverseFouriertransformofthespectraldensity,revealedanaverageoscillation
frequencyof$8Hz.Thesignal’senvelope,whichrelaxedtowardszerowithanexponentialtimeconstantof115ms,reflectedtheperiodoverwhichthe
oscillation’sphaselostcoherence.Analogsignalsweresampledatafrequencyof2.5kHz.B,C,andDderivefromthedatashowninA.

14382"www.pnas.org!cgi!doi!10.1073!pnas.251530598Martinetal.

IrreversibilityDissipation
(entropy production)

} }
Physics Information theory
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kBT
= D(pforward||pbackward) ≤ D(p̃forward||p̃backward)



Estimating dissipation (E. Roldán)

dissipation = 0.01 kT
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FIG. 1: Discrete ratchet scheme. Particles can jump between
i → j, i� → j�, and i → i� where potential has periodic
boundary conditions. The switch rate is r whlist the rest of
rates satisfy detailed balance.

If the two processes p and q in Eq. (1) are Markovian

one easily obtains

Dn = D1 + (n− 1)

�

i,j

pi,j log
pi→j

qi→j
, (6)

yielding

D(p||q) =

�

i,j

pi,j log
pi→j

qi→j
= D2 −D1. (7)

For the specific case p = pF and q = pB , D1(p||q) = 0

because the one time statistics is identical for the for-

ward and backward trajectories. Then if the process is

Markovian, we only need the statistics of pairs of states

to calculate the relative entropy

D(pF ||pB) = D2. (8)

which is not a hard task if the number of states and

possible transitions is not large.

For k-th order Markovian dynamics, i.e. when blocks

Xn ≡ (xn, xn+k) are Markovian, the relative entropy is

D(p||q) = Dk+1 −Dk = Dk+1+m −Dk+m (9)

for all m ≥ 1. The curve of Dn+1 −Dn versus n satu-

rates at n = k for k-th order Markov chains.

We analyse the relationship between entropy produc-

tion and relative entropy using an example of stochastic

discrete process in statonary regime, a discrete ratchet.

Our model of discrete ratchet consists on a particle

moving on an linear one-dimensional asymmetric peri-

odic potential inmerse in a thermal bath of temperature

T = β−1/k. The particle jumps between adjacent states

in a lattice discretized to three values and the potential

is switched on and off at a rate r.
The trajectories are described by two degrees of free-

dom: The position of the particle, which can only be

x = {0, 1, 2}, and the state of the potential (on or off)

described by the binary variable y = {0, 1}. Then we

can easily analyse the effect of a partial description of

the process by restricting the information of the process

to the evolution one of these two variables.

FIG. 2: Comparison of the analytic average dissipation per
step with D2 and D3−D2 for single discrete ratchet trajecto-
ries in stationary regime described by information of the state
and the position, with N = 106 steps and r = 1.

In Fig. 1 we show a sketch of this system. We label

states with the potential switched off as x� = {0�, 1�.2�}
while the ones with the potential switched on as x =

0, 1, 2.

The dynamics of such system is irreversible (and there-

fore dissipative) due to the detailed balance breaking

steps i→ i� where

ki→i� = r, i = 0, 1, 2. (10)

The rest of the rates obey detailed balance condition,

with the choice

ki→j = e−β
(Vj−Vi)

2 , ki�→j� = 1, i, j = 0, 1, 2 and i �= j
(11)

Firstly, we analysed single stationary trajectories of

the process using the information of both position x and

state of the potential y. In this case the dynamics is

Markovian, as the relative entropy rate is equal to D2,

D3 − D2 and so on, yielding eq. (9) valid for k = 1.

In addition, D2 saturates the inequality (5), giving the

average entropy production of the process, in k units.

For high values of V , some transitions do not occur.

For example transition 0→ 2 does not occur while its re-

verse 2→ 0 does. These rare events lead to a divergence

in the relative entropy. We solve this by restricting the

sum to pairs which do not have this problem.

D2 → D�
2 =

�

i<j

�
(pij − pji) log

pij

pji
≤ D2, (12)

where the superindex prime denotes a sum over pairs

which satisfy pij �= 0 and pji �= 0. This lack of sufficient

statistics can be solved using long enough trajectories to

observe all the unlikely events.
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The rest of the rates obey detailed balance condition,

with the choice
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(Vj−Vi)

2 , ki�→j� = 1, i, j = 0, 1, 2 and i �= j
(11)

Firstly, we analysed single stationary trajectories of

the process using the information of both position x and

state of the potential y. In this case the dynamics is

Markovian, as the relative entropy rate is equal to D2,

D3 − D2 and so on, yielding eq. (9) valid for k = 1.

In addition, D2 saturates the inequality (5), giving the

average entropy production of the process, in k units.

For high values of V , some transitions do not occur.

For example transition 0→ 2 does not occur while its re-

verse 2→ 0 does. These rare events lead to a divergence

in the relative entropy. We solve this by restricting the

sum to pairs which do not have this problem.
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where the superindex prime denotes a sum over pairs

which satisfy pij �= 0 and pji �= 0. This lack of sufficient

statistics can be solved using long enough trajectories to

observe all the unlikely events.
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FIG. 3: ∆n vs 1
n empirical values (blue circles) for a tra-

jectory without state information and given by the following
parameters: N = 107 steps, r = 1 and V/kT = 1. We also
show the linear extrapolation obtained with ∆8 and ∆7 (red
line). Given our ansatz, we estimate the relative entropy with
the cut of this line with the y-axis.

The results are shown in Fig. 2, where we compare the
analytic value of the average dissipation with the empiri-
cal relative entropy values obtained with single trajecto-
ries for different values of the height of the potential V
.

Let us now analyse what happens if we use partial
information of the process. If we remove the information
of the state of the potential, the trajectories described
by the position {xi} are not Markovian. Only when r →
∞, {yi} is a white noise and the dynamics of {xi} is
Markovian [8].

The relative entropy calculated with this partial infor-
mation, denoted by D̃, lower bounds the average entropy
production using D̃n − D̃n−1 up to n = 9 as shown in
Fig. 4. In addition, D̃n − D̃n−1 does not converge to a
certain value increasing the order n, i.e. the dynamics is
not at least 9-th order Markovian.

We can estimate the relative entropy with the following
ansatz:

∆n = D̃n+1 − D̃n → D̃ +
α

n
. (13)

Using this assumption, we estimate D̃ with a linear
extrapolation obtained with ∆8 and ∆7. The cut of the
linear extrapolation with the y -axis at the origin, plot-
ting ∆n vs 1/n, gives our estimation of D̃ (see Fig. 3 for
details).

This ansatz still gives a lower bound of the entropy
production as seen in Fig. 4. However, we can differ
between equilibrium and nonequilibrium processes even
with partial information. The curves show that D̃n −
D̃n−1 goes to zero when V/kT tends to zero, and that
holds even for D̃2 (see inset of Fig. 4).

FIG. 4: Discrete ratchet with N = 107 steps and r = 1. Dis-
sipation per step in kT units (blue curve) vs. V/kT , relative
entropy per step with state D2 (black squares), relative en-
tropies without state, D̃2 (green circles), D̃7−D̃6 (black “+”)
, D̃9 − D̃8 (purple “×”) and the results given by the ansatz
from eq. (13) (red diamonds) as well as those given by the nu-
merical calculation with Lyapunov exponents (yellow stars).
Inset: D̃2 from the simulation (green circles) and analytical
calculation (blue curve).

There are two different possible sources of error in this
estimation of entropy production with partial informa-
tion: The relative entropy may not be correctly estimated
via this ansatz or the relative entropy gives a lower bound
of the dissipation as we are using partial information.

This question could be assessed with an analytic cal-
culation of D̃. Trajectories defined with {xi} are hid-
den Markov chains. The relative entropy for this kind
of processes is equal to the difference of two Lyapunov
exponents [9–11]. In this case, the n−th order relative
entropy can be expressed as follows:

D̃n(pF ||pB) =
�

xn
1 ,yn

1

p(xn
1 , yn

1 ) log

�
yn
1

p(xn
1 , yn

1 )
�

y1
n

p̃(xn
1 , yn

1 )
, (14)

where xn
1 ≡ x1, x2, . . . , xn , p(xn

1 , yn
1 ) =

p(x1, y1, . . . xn, yn) and p̃(xn
1 ) denotes the probabil-

ity in the reverse process. This definition is equivalent
to (1) but expressed in terms of typical sequences of the
process. We define the transition matrix

A(xi, xj) ≡
�

p(xj0|xi0) p(xj1|xi0)
p(xj0|xi1) p(xj1|xi1)

�
, (15)

and the matrix Ã(xi, xj) with the same arguments but
using p̃ instead of p, the relative entropy can be expressed
as a difference of the following Lyapunov exponents of
products of random matrices:

D̃(pF ||pB) = λF − λB , (16)
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